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Preface to Regular Edition

2 A\

. This textbook has becn prepared for the use of first4year
students in colleges and technical schools. The methods
of presentation are those that have been found st suc-
cessful during many years of teaching expérience with
groups and individuals having varying degreds of prepara-
tion. A preliminary multigraphed edition #¥4s used in more
than twenty sections of students i) .ifa\rious divisions of
Washington University—the College.of Liberal Arts, in-
cluding pre-business and other prefprofessional courses, the
Schools of Engineering and Architecture, and the -evening
classes. ' N\

Although the primary ©bjective has been clarity of ex-
planation, the question(of Togical rigor has been kept con-
stantly in mind, and an'effort has been made to distinguish
carefully between,‘afsumptions and proofs. It is hoped

-that an apprecigtion of rigor will be developed in students
of the boo];,g;}:\)éll'ticularly those students who later take
more advahted courses in mathematics,

The ﬁ'.r:st part of the book constitutes s thorough review
of the\topics of elementary and intermediate algebra. It
whg written with the ides in' mind that many students have
little skill in algebraic manipulation, although it does as-
sume an intelligence level that may reasonably be expected
of college or university freshmen. Well prepared classes can
cover this part quite rapidly, or even omit it altogether,
and proceed to the later portions, Mature students will
find enough material for g very complete course containing
all of the topics usually taught in College Algebra, also

¥



vi PREFACE TO REGULAR EDITION

certain additional topics which, because of their impor-

tance, it has seemed desirable to include. Those not $0

well prepared can cover the first part more slowly and then
be given such chapters and topics in the latter part of the
book as the instructor may deem appropriate,

The arrangement of chapters and topics was decide\d
upon only after members of the Macmillan staff had ‘ebn:
sulted a considerable number of teachers of the subjeef in

various institutions in different parts of the countty. = Al-
though the present order is a composite of suggestions, and
represents the arrangement which seemed most “desirable
to the majority, the individual chapters hage'been rendered
to a large extent independent by means of cross references
and a certain amount of repetition of/iniportant connecting
ideas. Because of this, the instruetor who prefers a differ-
ent sequence of chapters, or who “desires to omit certain

- material, will find that the haok can readily be adapted to
his needs. &N -

The book contains a libetal supply of selected and graded
exercises. Answers A0™ the odd-numbered exercises are
printed at the baqlg\of' the book, answers to the even-
numbered exercises are printed in s separate pamphlet.
This pamphiet is available to students upon request of the
instructor N/ _

- Among’the special features may be mentioned the treat-
ment\of determinants. This follgws the method outlined
by G\ D. Birkhoff in his article Determinants,” in the
Ancyclopedia Britannica. Tt is believed to be somewhat

{ \simpler than the usyal method based upon the idea of in-

versions in order. My thanks are due to my colleague,

Professor H, R. Grummann, for calling my attention to .

this method. '

The chapter on the theory of equations contains maore
material than is to be found i maany texts on college alge-
bra. One important feature is the inclusion of Descartes’
rule of signs in extended form, which states that the num-
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ber of positive roots is equal to the number of variations
in sign or is less by an even number, In this form it is much
more useful and but slightly more difficult to prove. In
addition to Horner’s method for the solution of equations,
another approximate method, which 1s essentially linear
interpolation, is given. This alternate method, in addition
to its simplicity, has the advantage of being applicable to
any type of equation. The matertal is so arranged that\
either method may be omitted at the option of the m—
structor.

Because of its usefulness, the binomial formula fdk other
than positive integral exponents is given, mtheut proof,
however,

A decided simplification is made in the.rules for deter-
mining the characteristic of a logarithmiand for pointing
off an antilogarithm, whereby the femr rules ordinarily
given are replaced by a single rule}, - The question of the
accuracy of results obtained by using approximate num-
bers is discussed. ™

In connection with thes chapter on compound interest
and annuities there are given tables of compound amounts,
present values, amoumts and present values of annuities,
Since anyone havigg much to do with financial transac-
tions will use takles of this sort, it seems desirable for the
student to leam" to employ such tables in the solution of
problems. \

The appheatlon of probability to mortality tables is
emphamzed in the chapter on probability.

Bacause of the recent rapid growth of the subject of
‘statistics and because many students may later be engaged
in statistical work, it has seemed advisable to include an
elementary chapter on finite differences. This subject,
long omitted from books on algebra, deserves to be in-
cluded again.

I wish to take this opportunity to thank my colleagues in
Washington University for using the preliminary multi-

Q"
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graphed edition of the book and for making various sugges-
tions for its improvement. I wish also to express my appre-
ciation to The Macmillan Company for the very valuable
editorial assistance which they have rendered during the
process of revision and publication. The revision of the
multigraphed edition was ecritically read by three of their
advisers, and after another very thorough revision,"in
which the criticisms of these advisers were taken it ac-
count and their suggestions incorporated, it was againread
by three advisers, after which further revisiong,..',\gei-e made,
: P, R. R.

8r. Louis, Mo.’ : .«~:\\

February, 1940, ' ¢

>

“j\s.
Preface to the Alternate-Edition

*

This edition has beenprepared to provide fresh prcblem .
material. The exerdides are all new with the exception of
several which are 6f % theoretical nature. They have been
increased in puwiber by sbout ten per cent. They have
been carefully ehosen so as to bring out the various topics
treated apdto illustrate a wide variety of applications of
algebral’y Tt is believed that they will furnish ample ma-
terial\for drill in algebraic manipulation and also that
mam\y of them are sufficiently thought-provoking to prove

~Challenging and stimulating to the student. The text

N
\

“matter has been retained intact save for a fow very ruinor
changes,

P. R. R.
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CHAPTER |

Review of Elementary Algebra

. Introduction. D

“ shall recall in this chapter certain principles, Whmh
are the results of the fundamental assumptions of;algebra.
Exercises are provided for illustrating the appllbatlon of
these principles and for the purpose of reviewing various
matters of algebraic manipulation. N

" N

9. Fundamental assymptions. \¥

Some of the fundamental assumptlons concerning real
numbers, both positive and nega,tlve, are as follows:

The sum of two numbers ia\the same in whatever order the

numbers are added. Tha{t, 18,
O
‘ ¢+ b =1b+a

This is called t}}éﬁb}xlmutative law for addition.
The sum df'Wliree or more numbers is the same in wholever
way the @m\bers are grouped. Thus,

d+b+c—(a+b)+c-a+(b+c)

'}hxs is called the associative law for addition.

Tts usefulness may be illustrated by the following exam-
ple from arithmetic: 136 + 25 4 64. Here it is easiest
to combine the first and third numbers, obtaining 100, and
then, making use of the commutative law, to add the 25,
getting the final result, 125. Its usefulness in algebra is
even greater.



4 REVIEW OF ELEMENTARY ALGEBRA <h. |

The product of two numbers ts the same in whatever order
the numbers are multiplied. That is,

ab = ba.

This is called the commutative law for multiplication.
The product of three or more numbers is the same in wheai-
ever way the numbers are grouped. Thus,

N

A\
abe = (ab)c = a(be). O
This is the associative law for multiplicatiofng)
: For example, in evaluating the product”‘l\25 -173 - 8, we
find it quite simple to multiply the firstvand third factors
together, obtaining 1000, and ag /2" final step to get
1000 - 173 = 173,000, whereas a.I}j,*:Bther manner of group-
ing the factors would require_thore work.
The product of a number @it the sum of other numbers is
the same as the sum of tfae:;cﬁ‘oducts obtained by multiplying
each of the other numbersdy the first number. In symbols,

,g'a?(b +¢) = ab + ac.
&

This is the distributive law for multiplication with re-
spect to addition.

As a)pumerical illusiration we note that 6(3 + 2}
= 0@+ 6.2,
".'6’)1';\1'181' fundamental assumptions are the following

- r2Xioms:

PN

VvV

Quantities equal to the same quantity or to equal quaniities
are equal to each other, :

If equals are added to equals the sums are equal,

If equals are subtracted from equals the remainders are
equal.

If equals are multiplied by equals the products are equal.

If equals are divided by equals the quolienis are equal.’®

* Division by zero is excluded. See section 4,
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A gquantity may be substituled for its equal vn any expres-
ston.

Most of the axioms concerning cqual quantities may be
combined into a single axiom: If the same operation is
performed on equals, the resulls are equal.

3. Subtraction. N\
To subtract b from a is to find a number ¢ such thab,
e=b+ec O
4. Division. - N

To divide a by b is to find a number ¢ such {Hat'e ="be.

' By this definition, if @ is any number, au{i.b i8 zero, then
¢ is the number for which ¢ = 0-¢. Bt 0-¢ = 0, and
thug there is no number ¢ for whichhd = 0 - .  An excep-
tion would occur if ¢ itself were ze’r.pf /' Then ¢ could be any

~

number whatever. RN

Since division by zero is thus either impossible or am-
biguous, it is always excluded from all algebraic opera-
tions. With this sole exéeéption, each of the four operations
(addition, subtrac 'oﬁ;’multip]ica.tion, and division) is

always possible add always yields a unique result.

A%

5. Signs. \~

The si%ffi)}’ecédihg the product or quotient of two quan-
tities isplus (4-) or minus {—) according as the quantities
haveike or unlike signs.
\ )

Examples. )
' 6z —8 8

a-b=ab (—3)-(—2) =6, o 3, 72—4, -t —4.

How can the foregoing rule be extended to the multipli-
cation and division of three or more quantities?
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] REVIEW OF ELEMENTARY ALGEBRA . [Ch. 1

6. Symbols of grouping.

Several numbers are frequently grouped to indicate that -.
they are to be considered together as a single number. The
H
braces { }, and vinculum -

To remove symbols of grouping preceded by a minus
sign, multiply each term * within the symbols of grouping
by —1. O\
7NN ¢
Examp.fes.. O

¥ 4 ~’~.
<

4x-(3y~z+2)=4x—3y'+z—2.,f\~.
7a-—f'[6b—(o.—2d}+e]=7a-—66+(c—.2tz}-e.

I an expression is to be enclosed™within symbols of
grouping preceded by a minus.sign, each term of the

- expression must be multiplied byy=1.

Symbols of grouping preceded by a plus sign may be
removed or inserted whengver desired, without affecting
the value of an expressidn

Examples. P\

N G- =2ty -2
»a—bte=a+ (—b+e.
A qqg@iity multiplying or dividing an expression within
symbls of grouping multiplies or divides every term within
tbq\s\ymbols of grouping, ' '

O Examples.

2 —=3bBs— 2% =2 — 152 -+ 6y.
*+32y —2) =z + By — 3.

The foregoing rules apply when symbols of grouping are
contained within other such symbols. -
* When an expression s made up of parts connected by plus or minus signs,

each part, taker with the sign immediately preceding it (+ being understood
for the first part if no sign precedes it), is ealled 4 Emn. e ”



1. EXPONENTS 7

Example. :

3a — {b+ 2z — 4y ~ (¢ — d)] — 5}
=3¢ — {b+2x— 4y — ¢+ d] — 5}
=3¢ — {b+ 2r — 8y — 2¢c + 2d — 5}
=3a—~b—2c-48y+ 2c— 2d + 5.

EXERCISES 1. A

Remove all symbols of grouping and combine like terms: .
KO

10— —(7T-3)+ B8 —2) N
. 10 — 35 —2(7 —3) + 38 - 2.
20 —[o—(26—¢) +alb—c—3)] A\

. 5z — {3a — 2ala — b — (3 — 2y)] — 3yl. R4

4{5p — 2[q — 3(2p + 3¢ — r — 5) + Tpli.

. a+65{5—a—2{3a—4(c+2d)—2]}

4(2a — 3b) — 2{3a — 2b + 5[2z + 3b —\@a —~ 3}

. What is the value of the foIlomng expression if z = 3,

y= —2¢

43z — 2y + 1) —3{2?—2?)[ 33"-4+2(1—x)]—2xy}
Place the last three term,s of the following expressions in

parentheses preceded hy{apminus sign;

9, 2 —x—2y—~3. i\ 10. p—g—r+ s
11.a+2b—3c—4d\\ 12. —3m — 2n -+ 4k + Tk

ooﬂc:gmur-mwr-n

7. Exponents. )

The sym}qéﬂ\ 2°® means @-a-a. In general, if nis a
positive witele number, then a” meansa - @ - - - ¢ (nfactors),
and is, Qa“Ted the nth power of a, n being the exponent of
the plsWer

\The symbol v/ (nth root of a) is a number which raised
to the nth power will give a. The integer n is called the
index of the root. (See section 33.)

It follows that

@-af=(a-a-a) (@ -a) =a*? = g5

a-a-a-a-a
= =g = a,
a-a-a

=]

[ %

o

a
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(@Y =a® gt a® ® = g3 = a*?,

3
""{112 — a12X3 = aé.

It also foliows, from the commutative law for multi-
plication, that

@ B = (a-b) o

In general, if m and 7 are positive whole numbers{ )

a"a" = am+n ) \,u}s
A 4.0
e =9y m>n, a0,
a™ 1 N
RN S
(am)n a™ " y
EXERCISES 138
. KN
Perform the g@?&ted operations:
Latoge, O 2, 20. 9,
3. . x5y4:..,';...‘ 4. 3a% . 2p2.
5. dpt . ZpAn/ B, (—22%)(—5e2).
7. B 8, — g2 1
2D o« @ (—ay)(~y)n
1z?)2, 10, (—4x2)2
1. &z, 12, (—4z2p,
13 : dat
% . o
15. 14:1;31;"’?:7. 16 — 18abicids
4«?{!/*3“- " 24abiFgr
a7, ™ 19, Batbcds
e 15abicidp
19, 15¢1853 . : 20 (it
— 107104545 ) g(wzws)z ’

2L (a® =+ g% . o3, 22. ¢® = (a8 a9),
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23, (a®-a¥) + gl : 24, @® . (a® =+ a¥).
25, (12x% = 2z%) - 44, 26. 12x% = (227 - 4x4).
27. (12z%- 227 + dut 28, 12x% (2x® -+ 4x%).

8. Multiplication of polynomials.

An algebraie term (see page 6, footnote) is said to be
integral and rational in certain literal numbers if it is the
product of positive integral powers of these numbers
muitiplied by a factor not involving them or if it does nét. )
involve them. Thus, the terms 5z%2, —3z, 3°4/3, ahd 7
are integral and rational in x and y. The terms 2/% ‘and

2°4/y are not integral and rational in z and y. @he last is
integral and rational in 2 but not in y.)

An algebraic expression is called a m nmmal if it is
composed of just one term, a binomial if 415 composed of
just two terms, and a trinomial if i${1§ composed of just
three terms. An expression eompoSed of more than one
term is called a polynomial. ¢

An integral rational polyngmial is one in which each
term is integral and rational>™> Unless otherwise stated, all
polynomials to which we\refer will be understood to be
integral and rationaki@a‘}ll literal numbers involved.

Note. It is semetimes convenient to elassify an integral
rational monorma.l\as a polynomial.

E X am,&.

Mult}ply 2a® — 3ab + b2 by a* 4+ 2ab — 582

\SOLUTION.
2q? — 3ab 3 b?
a? + 2ab — 5b*
a! — 3a%6 + o’
407p —~ 6a®? 1+ 2ab?
— 10a?? + 15ab® — 5bt
2a¢t + a'h — 15a2? + 17ab® — 5b*

Q"
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Carcx. Ieta=3,b=2
202 — 3ab -} b* =18 — 18 - 4 = 4
a*+20h -5 =94+12-20=1
Product = 4,
2a* + b — 1ba®h? 4 17ab® — 5bt
= 162 4+ 54 — 540 + 408 — 80 = 4. N
The first line below the first horizontal rule, viz., 2as>3a%h
-+ a®?, is the produet of 4% and 202 — 3gb -+ b2, and 5060 Sim-
llar terms, such as ~3a% and 40%, have been placed in columns
and added. This is permissible, since the order in&yhich numbers
are added is immaterial. RS
The work may be checked algebraically by multiplying with
multiplier and muttiplicand interchanged\or by dividing (see next
section} the product by either of th pdlynomials to obtain the
other, Checking by the substitutiaﬁ f numbers does not prove
that the algebraic work is corredt.) If the numbers check it is
probable that the work is correts on the other hand, if the num-
bers fail to check there is celthinly a mistake,

. EXERCISES 1, ¢
Multiply; .\ii’jt\ _
1. 2z3—~3x+ by z 4 3.
2.3+ 5p~4byx ~ 6.
8. 6a? <% — 3 by 2a + 5.
4, 5k¥Z 6k + 1 by 3k — 4,
5,2m* — 8m — 3 by 2m? — 3,
Sndrt — 3 - ThySs? — 2z — 4

AL 252 — Bay o+ By by #2 4 2zy — 342,

N
%
\ }

8 2 - 20%y —® by Ty — zy? 4 RP.
9. 3x2'—2:c3~—5a:+2byx—x2+3.

SueumsTION, Rearrange both expressions according to de-
scending powers of x, '

10. 22 — 2 + 5by 3 — 2¢.
11._30,2—’Za3+10a——2bya2—2a3—5a+4..
123a% + 202 — ab® by 2ab + b7 — g2,

13, 3:c—-2y—4z+wby2x+3y—-z—5fw.
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Square:
14, 2% — 2% 15, 2a® 4 3b2,
16. x +y + = 1T, a + b — ¢,

Perform the indicated multiplications:

18. (a — 3){2a 4 5)(a® — 5z + 6).
19. (222 — 3z + 2){z% + 2¢ — 1}{(z* + 3).

Perform the indicated operations: KoY
20. (@ — 9z + ). 2. (z — )" O
22. (2a 4 3b)%(2a — 3D)2. 23. (2a — 3b)*(3¢ — 22))2

9. Division of polynomials. "‘\

Polynomials may be divided as Shown ) the following
example: \~

’X
a7

Example. ,'
Divide 527 — 20 + 3 by 2% — 4> 2.

SoLuTtroN. Arrange both pély'ﬁomjals according to descending
powers of #. The work m{hown below.

\\ —20 + U= quotlent)

(divisor =} 2? — 28> 4) —22% + ba? + 3 (= dividend)
. \% —223 4 422 + 8z
x’\n' _
A 2t — 2z — -
A\ —~ 62 4 7 (= remainder)
.n\:o

”E\e‘ﬁ'ﬂd, by dividing the first term of the divisor into the first term
of the dividend, that the first term in the quotient is —2z (Le.,
—22%/2? = —3x). Multiply the divisor 22 — 2z — 4 by -2z,
obtaining the polynomial —2z* -+ 422 - 8z, which is writien
below the dividend and subtracted from it. Continue the process
untit the remainder is of lower degree * than the divisor.

" * The degree of a polynomial consisting of positive integral {i.e., whole-

number) powers of 2 is the exponent of the highest power of z occurring in the
Dalynomial. Thus, the polynomisl 2% — 522 4 4 is of degres threc.,
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Division may be checked by usihg the relation
Dividend = Quotient X Divisor + Remainder (1)

either algebraically or by substituting numbers. A num-
ber which makes the divisor equal to zero must not be
used. - (See section 4.) &

\ s

We shall eheck the foregoing division by lettmg 'v\ 2 We
find

Dividend = —2¢* 4 522 +-3 = —16 20 + 3=
Divisor =a'— 20— 4 =4 — 4 <d'= —4,
Quotient = --22: + 1= —4 4 15\3
Remainder = —6z + 7 = —12 0= ~5.

N,

Bubstituting in (1), we get

7= —3(—4 &8, or T=T.
O\ EXERCISES 1, D

Divide: .\ajj;\ |
1l —atx &—4]33{9:—1—2
T 2. 6af — 5@2— 20z + 21 by 2z — 3.
3 10:1?‘—}: 132 — 172 — 21 by 5z — z — 7.

14? — 31z + 12 by 22% 4- 5y — 4,

ng T4 —62° - W0z by 2z — 1,
B4 1228 — Ta? — 5Br by 422 4 T — 2,

\ . 12a3+2a2+4}n:+30by3a+2

8. 12% — 46+2 + 240r — 175 by 2rt — 6r 4 35,

9. 154° — 8ay — Buy? + 49 by 52 — 6ay 4 22
1o, 322 — 2z +4 by + 3

11, P —Tet 4+ 5r — 2by z — 2,

12, 62 — But — 8z 4 4 by 2r — 3.

13. 12&3—6z2+x+2by3x2—1—4.
14.73;3—25x2—2x+8byx2-—3x—6.

15, 2 = 22% - 100z by z — 5.

16, 22 — y3by x — 3, 17. 22 -y by z — v,
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18, #* — ¥ hyz — ¢ 9. 2+ 9¥byx— 4

20, 22+ P hy e+ w. 2L 24y byxr+ v

22. Gx* — 22° — 1522 + 14z — 3 by 322 — dz 4 1.
Perform the indicated operations:

23. [(&® ~ ¥*) + (¢ — B)i(a + b).
24, (a* = b9 + e+ b)(a = B}

10. Constants and variables. N

A symbol which, throughout a discussion, doey’ not
change in value is called a constant,  (There are, of cqurse
some constants, such as 3, —2, and =, which neyer change
in value.) N

A symbol which may change in value durmg a discus-
sion is called a variable, N

In the formula for the area of a trla,ngle,

L oaS
A= éygj."

% i8 2 never changing congtant. If in a certain problem we
regard only the base §0f the triangle as fixed in value,
then for that problem; b is a constant, and the altitude %
and the area A e wariables.

11. Funchons\

When t3%0) variables are so related that to each of a set
of valucs'\)f one there correspond one or more values of
the other, the second variable is said to be a function of
tHe'first. The first variable is called the independent vari-
able, the second the dependent variable. For example, if
¥ = 2%, then y is a function of z, and we may regard z as
the independent variable, to which values are arbitrarily
assigned, and y as dependent on z.

This type of relation is often written in the form

J@) =4
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LR

which may be read “ the f function of z equals 2%, or,
more briefly, “ f of @ equals #%.”" If f(z) = 27, then f(a)
=¢% f(8) =382 =9, f(~3) = (—3)? =9, and so on.

In another problem or discussion we might have f(z)
=2x + 3 or f(z) = 1/x. That is, f(z) does not always
represent the same function of . Nor is f the only letter

. used to represent functions; we may have F(z), @),
v (z), ete. O\

The area of a circle is obviously a function of it radius, -
and we may write A = f(r). In this instancewe know the
form of the function, namely, f(r) = =2, T%imilarly, the-
edge of a cube is a function of its voluﬁtf\:. Here f(V)
= V7. \

Often one variable is a functionz’;&‘ “two or more other |
varisbles. For example, the wolime of a right circular -
cone is a function of its bagé and its altitude, since V
= gmr*h. This may be wriften :

LN 1
V.="f(r,h) = = =r2h.
& 3
N

If the radius‘is\ﬁ and the altitude 3, we have

Y V=se3) =

&

7+ 2% .3 = 4r.

ST | i

AN _ EXERCISES I, £

"N L Given fle) = 32+ % find JO), A1), £@), f(—1), (—),
e, f(—a), {1 = 3),

2. Gaven flz) = 2 — x; find J0), f(1), J(2), F(~5), f&), F(2),
7(2a + 3).

8. Given j(z) = 2* ~ 30 +4; find f(0), f(1), —B),
F(100). 1O, 1), f(8), f~5)

. -1 .
4. Given f(z) = ‘;‘;—2 ; ind £(0), (1), £2), (~1), £(5), f(~5)-
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10,

11,
12,
13,

14,

15,

18,

17.

. Given f(#) = # — 1; show that

. Given F(z,y) =

- Given f(z) =2* —4, g(x) =2z —3; find J(3) 4 ¢(2),

f(=8) 70) e
f(Lg(4), (1) f(2) 1. g(3) 6 — g(6)
J(a%)
f@) +2

» f(2a)g(a?),
= f(a).

. Given f(z) = 2z — 3; find fla + 2)[f () + 2].
. Givenf(xyy) - -'Bzy - g ; ﬁndffq'?z)sf(_'grl)rf(orﬁ))f(ﬁr_'?'):

&\

Jla,a), F2k k).
z* — 2zy -+ 3y°
2z 4y
Fla,0), F(O,b), Fla,a). “\
Fxpress the following in functional notatichad then give
the partieular form of the function: PN

'\
; find F(2,1), Ftvs:;,l:z),

The radius 7 of a circle as a function of-ifs éi.rcumference c.

[

BOLUTION, = f{e) = —.
2 N

The area A of a circle in termsof its diameter 4.

The area 4 of a square ag asfithetion of its diagonal d,

The area A of a circle as afimcetion of its eireumference e,

The cost €, in dollars{" oF (7 gallons of gasoline at 20 cents 5
gallon, N\

The distance d, it ‘miles, traveled by an automobile going at
the rate of 60 Thiles an hour, as a function of the time ¢ in
hours. \V

The are\}i of a rectangle as a function of its length I and
width&

TheYateral surface L of & right cireular cylinder as a function
~of.its radius 7 and its height .

18 \The base b of a triangle as a function of its area A and its

19,

altitude .
The altitude & of a right cireular cone in terms of its volume ¥V

+ and its radius ».

20,

A box is constructed by cutting square corners from a piece
of cardboard 12 by 12 inches and bending up the sides.
Express the volume V' of the box as a function of the side z of

‘the square cut out.

A

™\
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12. Graphs.

et us take two straight lines X’X and V'Y intersect-
ing at right angles at the point 0. (Sec Fig. 1.}  On each
we choose a unit of measurement and mark off a scale
with the zero point at 0. Positive numbers are to the
right on the horizontal line X'X » upward on the vertieal
line Y'Y; negative nimhbers

Pesy o are to the left¢bd) X'X,
* downward on YO¥. X'Xis
¥ called the x<amis, ¥’V the

y=t ol y-axis; thépoint O is called

z==3 ,. the origi'ii;\

X s QT ey Nowtake any point P.

“2] The)distance of the point
87 from the y-axis is called the
) . \-abscissa of the point and is
Fra. denoted by z, its distance

N from the z-axis is called its
ordinate and is denoted by . The abscissa and ordinate
together are calledJhe coordinates (more specifically, the
rectangular coordinates) of the point. The point P, whose
abscissa, is T and whose ordinate is Y, is denoted by (z,y)
or P(x,y),fhé abscissa always being named first,

Accogding to the above convention, if the point is to
the right of the y-axis its abscissy, is positive, if it is to the
lefbivs abscissa is negative. If it is above the v-axis its
Ordinate is positive, if below its ordinate is negative, The -

. (Sboint P(—3,4) in Fig. 1 has the abscissa 2 = -3 and the.
\ ordinate y = 4,

The process of locating and marking a point whose
coordinates are given is called Plotting the point. Plotting
is facilitated by the use of coordinate, or graph, paper.
(See Fig. 2.) .

Tet us now consider the function

f ¥ =2z 4 3. 1)
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By assigning values to & and finding the corresponding

y=2x+1+3% v
A F ¥
-3 -3 . |
—2 -1 (- s
-1 1 ) H | |
0 3 e ,__L7L ]
; ? _,L.,_ll, Z:"—/ i \:\
b BV XN °©
3 a __J'_ J% ) . N
values of ¥ we can construct ; _ , 7
a table such as the one ac- Y NS
companying the figure. If Fra. 9w
the pairs of pumbers in this IR

table are taken as coordinates of pomts\and these points
are plotted they will be found to lie\on a straight line.

(See Fig. 2.} The line is ca]led the .graph of the function

fl@) =22 43 .
Yy - :' y=x
EEEEEER AN . :
L™
1 —4 16
,_m_\_ﬂ_ - _i;,.L:F | —3 5
T o - ~2 4
SN I [ LAt -1 i
=i i 0 0]
W T 1 1
A;‘Llr\;_l,_h__ / 2 4
N A v inEa 3 )
NP 4 16
A \" L A
‘O iERRA ARY. _
_’h_;_ : Proceeding in the same
b.of ; X : .
ENRENL) way with the function
Y :
Fic, 3 Yy = xzi (2)

‘we find that the points which we obtain will Ile on & curve
(Fig. 3). -
If the relation between z and ¥ is given in the form
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3z + 2y = 6, for example, in which neither variable is ex-
pressed explicitly as a function of the other, we may solve
for one of them before attempting to construct the graph.
Thus, in the above equation we should find

3z
2y = 6 — 3z, y=3—5’ “
before obtaining values and plotting. RAY,

If we had > —z +4 =0, it would be bettgi«.?;o solve
for z, getting & = * + 4, and then to give valués to y, for
if we solve for 3, obtaining y = /2 — 4we should have
10 extract square roots.. \/

A
EXERCISES I.H(:.
Plot the points: e .
L @7, &=0, (=47, <2-0, (1,0, (7,~-4), (-7,
.!;'(_7"'4)- ‘
2, (3;0)9 (0:3)! (_'3)0)!(05_'3)! (0:0)1 (393)’ (3,—"3)1' (—3)3)
3. (1'5’_2‘3)’ (T,——Z}, (33_27")} (%r%)r (%:”"%)
4. Find the digtax{i?e from the origin to each of the following
points: L\
SuaemsTion. Use the theorem of Pythagoras coneerning the
%fpdbenuse and sides of & right triangle.
O

Draw the graphs of the following equations:

"N\
“B.y=x—3. 6.y =2z 4 3. ;
T.o=2y4+3. B.oy=3—25
9 2+ 3y =12 10. 2x — 3y = 12.
6z -6y+16=0. . 12 554 6y =0,
13, y = 122 — 2, U 2242 —8 =0
15, y = 0222 — 49 3-8, 18. y = 3z — o2, '
17. y = 422 — 35 4 ° 18, y = §27 — 22 4 3.

19, y = 9 — a2, " 20. z% 4 o2 = 100,
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MISCELLANEQUS REVIEW EXERC!SES I G

Remove all signs of grouping and combine like terms:

1, 2a — (3¢ — 2b) + (50 — 6b).

2. 60— 20 — 4y~ (24+4y—3) -7

3. 200 — 2{3a — 4[5a — 2b — (4 — a)] + 7h}.

4. a(b + 2¢) + 3b(4a — 5¢) — Be(Ta — 8b).

5. 2 —3{2 — [T — 4z~ y — 2) ~ B2y — 2 — 21},

6. Find the value of the expression in the preceding exercise whem,
(A z=2y=42=3;(b) s =5y=—4:z= e\

Ny

QY

Perform the indieated operations: i N
7. 2a%- 3ab° - dathic’, 8. (20)*(3ab)2(4a’bich?,
9. 132%%° + 11a3y®, 10, 9labyt" + Fafyihs,

1. (&2 43z — 7)- (2 - 52 + 2). O

12, (42® — Bay + 632 - (32* — ay -+ 2y%). D

18 (32— 2) - (22 — 5) - (a7 = & — 2). \\()"

14. (2z + 5) - (3 — bz + 6) - (202 + 35> 4).

16, (1 — 22 +25)- B3z — 54+ 7). 3N

16. (20 — 172% 4 38z — 15) + (&% 5).

17, (122° 4 11a* + 11z + 20).2%4x + 5).

18. (6a* + 52° — 202* — 23k 20) + (32 — 2z — 4).

19. (102* — 392% — 13z =2) + (522 — 2z - 3).

20. (12a* + 6a* — 1648~ Ya — B) + (202 — 3).

21 Given f(z) = 2¢%~ 3z + 4; find f(0), £(1), f(—=1), f(-2),
J@) - f(—0f @ 1(2), f(2a), {(30), f(a + 2).

22. Given P{@}= (z — 5)(z +3); find F(0), F(5), F(~3),
F2) - F(B) F(2) + F(3), F(2m).

PI5L:
23, ¥ S2r — 5. 24, y = 5 -~ 2.
2, ¥y =iz 4+ 1L 26. z = 2y — 5.
2173z + 4y = 12, 28, 3z — 4y = 12.
29. 3z — 4y = 0. 30, y =22 — 1.
3Ly =1— 2= 32, y =2t — 5y - 6.
33 y = x* + 5z — 6. 34, y=6— 5z — z2

36, y = 4z — 17, 36, y = 15,
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Linear Equations

N

A\
13. Equations, O

An equation is a statement that two expresmons are
equal, the two expressions being called ylg\members, or
sides, of the equation. An equation mHoké members arc
equal for all permissible values of théyvariables involved
is called an identical equation, or nrr}ply anidentity. An
equation whose members are equal for certain values of Lhe
variables involved, but not forvall permissible values, 15
called ‘a conditional equaﬁon The word “ equatmn
used alone, will ordinarily ‘be interpreted to mean *“ eon-
ditional equation.” Any number or set of numbers which,
when substituted iox the variables, makes the members of
an equation quI to each other, 1s called a solution of the
equation andjs said to satisfy the equation. Identities are
satisfied by\dll‘ values of the Vauahles which they contain.

The e&uamons
&

..;%—3)'—233—5 (@ 4y =2 + 2uy + o,

e) ) x? 42 3

z—1" x—1

are identities, since they are satisfied by all permissible
values of the variables. (Note that in the last identity, 1
is not a permissible value for x; the members are not
defined for x = 1, singe this 1nvolves division by zero.)
The equation = 4 1 = 5, on the other hand, is a condi-
tional equation, since it is satisfied only by z = 4.
20
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An identity may be written with the sign = mstead
of =. Thus,

2(x — 3) =2z — 6.

The symbol = is read “ is identically equal to.”

N

14. Linear equations in one unknown. O

The degree of a term containing any number of i%;rl-
ables is the sum of the exponents of the variableg @ppear-
ing in that term, it being understood that theselexponents
are positive whole numbers. (See section 38} In the
expression 5z + 2 — 62%y the first term ig«ob degree 1, the
second of degree 0 (since 2° = 1,* a constant is said to be
of degree 0, that i3, 2 = 229), the thixd.ef degree 4 (it is of
degree 3 in z alone and of degree Lin 7 alone, but of degree
4 when both variables are considered) The expression
2* 4 1% Is of degree 3in x a,nd va

A linear equation is one. of ‘first degree in all of the un-
knowns involved. Terms of degrec zero—that is, constant
terms—may also be jresent. Thus, 2z — 3 = 0, 20 — 5y
+7=0, x+yA2: =8 are lnear equations. The
equation 22 —3@y 4 6 = 0 Is not linear, because the term
—3zy is of segond degree.

In solvin@)d linear equation containing a single unknown
quantity_we perform the same operations on both sides
of thegquation, with the ultimate purpose of getting the
u{ki;loivn alone on one side of the equation.

Example 1.

9 .
Solve: gw—3=4x+7.

SoLuTION. Multiply both sides by 3 to clear of fractions,

* Bee soction 84,
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obtaining
2 — 9 = 12¢ + 21.

- Add 9'to, and subtract 12¢ from, both sides. This gives

~10x = 30. 2\
Finally, divide both sides by — 10, obtaining \\\
r = —3. ) ""}&.

T\
. Thesolution —3 is called the root of the equfafion, which means
that it satisfies the equation. Roots should*always be checked.
9.\

Thus, ¢*{
¢ \

2 "’w’
53 -3 248) 47,

“ N
X

Example 2. .
Solve for z: \\V 2q 4 3z = Ba - 6.

)\ T

SoLurron. N\ ¢/ 3z = 3a + 6,
x\:\ r=a "I'- 2.
AL _
Criok. 20+ 3(a + 2) = 50 + 6,
AN 20+ 30 +6 = 5a -+ 6,
\”\)' 5a 4+ 6 = 50 + 6.

Many problems have to be translated into mathematical
equations before they can be solved conveniently,
Example 3.

How many ounces of pure sitver must be added to 120 ounces
of alloy 60 per cent pure to produce an alloy 70 per cent pure?
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SoLuTioN. Let # = no. of oz of pure silver that must be
added. Then,

120 + = = total no. of oz. in new alloy.
60% of 120 = 0.60 X 120 = 72
= no. of oz. of-pure silver in old alloy.
72 + = = no. of oz, of pure silver in new alloy.
24z o
= = (0.7
120 + = 70% = 0.70, A o
72 + 2 = 0.70(120 + 2) = 84 + 0.7z, R\,
x~— 0.7r = 84 — 72, . \J
0.3z = 12, RE
z = 40. ,\i;;
| 2440 12
CHECK. 1—*2-0“+—-40 = 160 =07 = 79%,
’..:\"
EXERCISES I AC\Y
Solve for z: : R \}
1, 52 435 = 0, N2 2-7-3
3 b —7 =224+ 17, A Liz—-6=3c+2
5.2 —3(1 —a) = 5 — 20 +2),
6. &%+ 50 ~ 3 = (@ B)(z — 3).
7.0z 4+b=cx +.d.\\
8 x+ N == (x— 5z — 2.
9 (z — 5)x ‘h{:‘g}: 2 + 9z + 10.
10, 3z +2i§§ — 5
4 A ~ 2 6
11, Sqlgfjg\bhe following equation (a) for z, (b) for y:
At -
@ dr — 3y = 6.
\’. ) Yy

12. Solve the following equation (a) for %, (b} for y:
Az + By + C =0,
13. Solve the following equation (a) for z, (b} for k:

Skz — 3k + 7 = 0.
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14. Solve s = vt + & (a) for v, (b) for ¢,
{
15, Solve R = %21 for 1

16. Solve the following equation (a) for wy, (b) for ws, (&) for wy;

. wh .
_ e, ——— ", ~\
Wy 4wy = iy

17. One number is 3 less than another; their sum is‘SJ.\"\Vhat
are the numbers? >
18. Find three consecutive numbers whose sum s 258.
18, Find five consecutive odd numbers whose stind iz 255.
20. Find four consecutive even numbers whésg sum is 156.
21, The length of a rectangle is 3 inchexgreater than its width.
Its perimeter is 20 inches. What atéits dimensions?
22. A man is twice as old ag his scm'> T'welve years ago he was
three times as old. Find thei ages,
23. A man is five times ag old s his son. Tn 7 years he will he
-three times as old as hiswsen will be at that time. How old
are they? N
24. In a sum of monegcomposed of dimes and quarters there are
twice as many,.dithes as quarters. If the sum of money
amounts to -85 how many quarters are there?
25. A sum of $2385 was raised for a benefit by selling 2000 tickets
‘to a show.’Some of the tickets were sold at $1.00 apiece, the °
Test ‘at:$\1.5{) apiece. How many of each kind were gold?
26 A ma}l bought 50 stamps for $2.25.  Some of them were ordi-
Dary 3-cent stamps, the others wore 8-cent air mail stamps.
«\How many of each did he buy?
27, A man paid $2.25 for 12 gallons of gasoline. Part of this was
Y regular gasoline at 17 cents & gallon and part was ethyl at 20
cents a gallon. How much of each kind did he buy? 1
28, How much 90 per cent alcohal must be added to 20 gallons of 2
mixture which is 82 per cent aleohol to make the mixture 85
per eent alcohol?
23. How many pounds of coffee costing 25 cents a pound must be
added to 60 pounds of coffee costing 30 cents a pound so that

the mixture can be sold for 35 cents a pound at a gain of
$77 : '
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30.

31,

32.

33.

34,

35,

36.

A dairyman has 1000 pounds of milk which contains 21 per
cent butterfat. -How many pounds of it must he remove, and
replace with an equal amount of cream containing 25 per cent
butterfat, to obtain a mixture which contains 3% per cent
butterfat?

A man has $3000 which he places at interest, part at 3 per
cent, the rest at 3% per cent. The total annual interest
which he receives from these two investments is $251.75.
How much is invested at each rate? O\
An investment of $5000 yiclds a cerfain rate of interest
anothcr imvestment of $2000 yiclds a rate which is 2 per. cent,
higher. The annual yicld from the two investmenté i8$255.
Find ihe rates. V.

A man drove a certain distance at the rate of5Qwmtiles an hour
and returned at the rate of 40 miles an hour, )y The round trip
required 2 hours and 13 minutes. Fj;{i:ﬁne total distance
that he drove, \§

Two airplancs set out simultaneonsly.from airports 500 miles
apart. They fiy toward each ofher and meet at the end of
1 bour and 20 minutes. The.speed of one plane is 15 miles
per hour greater than that.gf the other. Find the speed of .
each. 2

An airplane flew in &T?]}rect line from its base at the rate of
200 miles per hourtdnd returned over the same route at the
rate of 180 mileg per hour, requiring 15 minutes longer on the
return trip, \How far from its base did it fly?

An airplapeelimbed at an average vertical speed of 200 feet
per mingte tnd descended at once at an average vertical speed
of 128\miles per hour. The flight was performed in 26
midntes, What altitude did the plane reach?

37.~s{&.,\man fires a gun at s target and 2 seconds later hears the
N gound of the bullet striking the target. Assuming that the

38.

bullet travels at a speed of 2800 fect per second and that
sound travels at a speed of 1100 feet per second, find the

distance to the target. .
How soon after 12 o’clock are the hands of a clock together

again?

SovvTioN. Letz = number of minute spaces minute hand
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39.

40,

41

42, Two children are balanced on a see- S ‘r

{Thus, for the lever in Fig, 4 we have wid; = w.d,
" Unless the contrary is stated, the weight of the lever itsclf

travels. Then x/12 = number of minute spaces hour hand
travels. Sinee the minute hand goes completely around the
dial and overtakes the hour hand, it travels 60 more minute
spaces than the hour hand, and

T
x — — = B0, .
12 ~

from which we get © = 65%. The answer is therefofe hr.
5% min. O

How soon after 2 o’clock will the hands of a cbo&k extend in
opposite directions? AD

How soon after 3 o’clock will the hands ofraelock again form
a right angle? -

It is now between 9 and 10 o’clock.»Jal 4 minutes the hour
hand of a clock will be directly oppésite the position occupied
by the minute hand 3 minutes a0y’ What time is it?

A lever is a rigid bar having s single point of support,
called the fulcrum. If a weight w is attached to the lever at
a distance d from the fulerum then d is called the lever arm
of the weight 1, and the'product of the weight and lever arm,
wd, is called the fement of the force about the fulerum.

¢ &\J In physies it is shown that

L AN . .
& 4 A g A, when two or more weights are
W, FAS, ? wy  attached to a lever, then, #f
AN\ Fie. 4 the lever balances, the sum of
N\ the moments on one side of the

Sulerum is equal o the sum of the moments on the other side.

will be disregarded. If the weight of the lever is to be taken
into consideration, it will be assumed that it is distributed
uniformly (i.c., each linear foot of it weighs the same amount).
In such a case the entire weight of any part of ihe lever may be
regarded as conecentrated af the mid-

"patnt of that part. 6 F ®

0
saw. The smaller, weighing 40 Fie. 5 K

pounds, is 6 feet from the balancing point. How far from
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the balancing point must the other sit if he weighs 60 pounds?

Sorutior. Let x = no. of ft. from balancing point.
Moment of 1st child = 40 -6 = 240,
Moment of 2nd chiid = 60z.

60z = 240, ‘
T = 4.

43, A board 10 feet long weighs 8 pounds per foot. It is sups
ported at a point 3 feet from one end. How large a Welgfrt
must be attached at the extremity of the short end of the
board to make it balance? o\

7

Sovvuriox. Method 1. Let x = weight (in:'\lb.). Short
end of board weighs 3 X 8 3 ) 7
= 24 1b. Since this may be L e e e T
congsidered as eoncentrated
at its midpoint, its lever .
arm is 1.5 ft. and its mo- 3% Fia. &

- ment is 24 X 1.5, Long en.d"of hoard wclghs 7 X8 =56
'Ib., its lever arm is 3.5 ft. qand its moment is 56 X 3.5,
B Equatmg the sum ofl oments on the left of the balancing
point to the moment’ on the right, we have

\\

N 3}‘3 + 24 X 1.5
x

,.\'

i

56 X 3.5,
533 Ib.

M &i ®. Weight of board i5 10 X 8 = 80 Ib. This may

be fesarded as concentrated at its midpoint, which is 2 ft.

130 mght of fulerum. Iis moment is therefore 80 X 2 = 160
o and we have

3z = 160, z = 53L.

44, Two children weighing 60 and 40 pounds respectively are on
opposite ends of a 12-foot board. Where must the point of

. support be placed if the board is $o balance?
46. If, in the preceding exercise, the board weighs 5 pounds per
foot, where must the point of support be placed?
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46, A workman uses s erowbar 5 feet long. If the fulcrum is

47.

48.

49,

9 inches from one end of the bar, how large a weight can a
man move by exerting a force of 180 pounds?

I the fulerum in the preceding exereise is 8 inches from onc
end of the bar, how much foree must be exerted to move a
weight of 975 pounds?

A crowbar is 5 feet long. Where must the fulerum be placed
50 that a weight of 1225 pounds can be moved by exertin\g &
force of 175 pounds? 'S

7

A
A rod has a weight of 35 pounds attached at one end, ;f’weight
of 25 pounds at the other. It balances at a, p’gﬁit 6 nches
from the middle. How long is the rod? o0

A rod is 10 feet Jong. A weight of 75 pottuds is attached to
one end, a weight of 50 pounds to thewsther. At a distance
of 2 feet from the 50-pound Weig@,:a third weight of 35
pounds is atteched. Where is thé balancing point (a) if the
weight of the rod can be neglécted? (b) if the rod weighs
4 pounds per foot? T W

W
a o

15. Linear equations i‘n':f\[\;‘o unknowns,

We shall recall, by Means of an example, 3 method of

solving a pair, or system, of linear equations in two un-
knowns (mmu&é.jleous equations).

&

X
&

4 .\’ $

PN

Examg(e’.‘.“‘
Solveythe equations
'"\'Q~
N 2 ~ 3y = 16,
Sr 2y = 2,

SoLuTION. " Multiply the first equation by 2 and the second by

3, in order to make the coefficients of y numcrically equal. We
have

dr - Gy = 32,

152 + 6y = &,
Adding, we get 19z = 38.

Dividing by 19 gives

= 2
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From the second of the original equations we find

2y=2—br=2-~10= —8§,

or g = —4,

Nore, It is usually better
to obtain the valie of the sec-
ond unknown independently
rather than by this method.

It i3 readily seen that the
values x = 2, y = —4 satisly
both equations,

The equstions may also be
solved by solving one of them
for 4 in terms of z, say, then
substituting this expression in
the other and solving the re-
sulting equation for z.

Y

/o"
T?ﬁw}_

et

/ﬂ’
7

)
[

\‘ﬁ\
SRS,
'4‘

ferr]
\\“-E.

2

(AN

”’FYG7

In Fig. 7 the lines which are the graphs of the two equations
are shown. It will be observed ,ths:t. they intersect at the point
¢ = 2, ¥ = —4, which is thelSolution of the two equations,
"Thus, the solution might heve been obtained graphically by plot-
ting the two lines and yeading oft the coordinates of the point
at which they 1ntelﬂe‘6t<\ Ordinarily this method gives only an

Yapproximate result, whereas the algebraic

Y
TRy process given above is exact.
—AS
A’( DT T'wo equations such as
i" 2z +y =4,
”,\.'L‘. N .2I+y=8,
} 5 AN x have no solution. They are said to be
B! inconsistent. Their graphs (Fig.8)are
¥ paraliel lines and consequently do not
Fic. 8§

Two equations such as

2x + y

intersect.

=4,

dx + 2y = 8§,



30 LINEAR EQUATIONS [Ch. 1i

m which the second can be obtained by multiplying hoth -

sides of the first by 2, are said to be dependent. Any pair
of values of 2 and y which satisfies one will satisfy the
other. Their graphs coincide.

16. Linear equations in three or more unknowns.

To solve linear equations involving three or nio}e

unknowns, we take them in pairs and eliminate one\éf’the

- unknowns, reducing the equations to a set in whidh)there is

one less equation and one less unknown., This\process is

repeated until we have a single equationo\’{ﬁfi’ch only one
unknown, which can be solved. Q)

Example. 7\
Solve the simultaneons equationg:()
bx —y ,-{:43 =5, (1)
22 + 34 5z = 2, (2}
7r 22 + 62 = 5. @)

‘SoLvrioN.  We sh@fl first combine equations (1) and (2),

eliminating y, and\ Qh’:én then combine (1) and (3), also eliminating
g Multiply .(.1,?:by 3. This gives
<§?“ 152 — 3y + 122 = 15, @
Am3':and (4). Result:
§3' 172 + 17z = 17,
or - x4+z2=1. (5)

Multiply (1) by 2, getting
10z — 2y + 82 = 10, {6)
Subtract (3) from (6). We get

3z +2 = 5. (7
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We are now ready to combine (5) and (7). Multiplying (5) by 2,
woe obfain

2% 4 22 = 2, (8)

and subtracting (8) from (7) we find !

*= 3.
&)
Substituting this value of z in (5), we get 'S
2= —2 ~: R
'\§.
Finally, by putting # = 3, 2 = —2in (1) we obtanh

o\
-y=5x—i—4z—5=l5—8'\—*~5=2.

s‘o

By substituiing z = 3, y = 2, z —-,~—2 in the original equations
(13, (2), (3), we verify the correufme;:s of the solution,

(For a method of solinny .sefs of linear eguations by means of
deferminanis see Chapﬁe}\ (VIIT)

S EXERCISES 1. B

N/

Solvethefollowing simultaneous equations for z and y:
Lz (225, 2. 3z +y = 21,
x_\\;—32 Ar Ly = 23,
353,—E—3y—26 4, 4z — by = — 16,
\ V2 — Qy = 41, 6z — Ty = —21.
8. 3x — Ty = 53, 6. 21z + 22y = 09,
7r — 8y = —23. 155 — 4y = 0.
T y=4x—2 8. y"'dx‘i‘s:
v =3y + 4 4r — 3y =
9. y=%2x -7, 10, 17:1:—13?;:0,
4z — 10y = 25. 12¢ — 23y = 0.
_ 11, 13= + 27y = 303, 12, 3r — 8 — 15 = (),

22 + 23y = 127. 5z — 12y — 13 = 0.
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3. 6z — 7y = 9, 14, 4z + Ty = 4,
5z — 3y = 4. 18 — 5y = 9.
15, 3z 4 1y = 33, 16. 0.3z + 1.7y = 36.4,
L s tiy =6 2.6 — 1.3y = —52.4.
17, 4z + 5y = 48c, 18. 3z 4 ay = 17,
3z — 2y = 13a. Te —ay = 3.
19,2 2_13, 2 819 o \
r oy 12 Ty A
1 L™
xr y 4 z ¥

. 1 1
Sveekstion. Solve first for — and - -
X

21, dax — 3by = —3,
Box - by = 43.

3az - bby = 21la,
5ax — Gby = —8b.
Bolve exercizes 21-22 for a and b.

22,

23. 24,

e/

25,

Solve for z, y, and 23\

3x+2y+z-—9~
4x—3y+z—22,
br + 4y — %3]
2x+13y+2z = —10
8x—7yv4z—69
-*5x~k~2y—32-—1
30. AE’»y—()
L@y be = 2,
“'62—-7:1:——48.

b 2
32 -
\ +

26. 27,

28. 29,

1

31

~ 3’

4

33.
¥

35,

¥ .‘“:\'\'
Sax, ~ Py = 375,
2qrA- 3y = —8b.
ﬁf—[— by = m,

er - dy = n.

6z + 2y — 3z = 15,
3¢ + by -+ 4z = —8,
4y + Bz = —13.
rty= -1,
y—i—z=9,

24z =4,

18z — 12y 472 = 77,
bz + 8y — 172 = 35,
9% — liy — 10z = 29.

3 4 3

- .___|___= ,
r y oz

4 6 5 8§
2Ty TR T3
7.3 9 1
- - X2
Ty 2z 4

3z + 4y + 8 = 6,
9% — 5y - 62 = 13,
15z + 2y — 4z = 6.
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Solve for @, ¥, 2, and #:
36, 20 — 3y + 42— 5 =0, M z4+y+z=23

3+ 4y — 52 4 6t = 12, y+e+i=4
de —y — llz — 4 = 11, 2+ i+ z=35
To 4+ Ty + Tz + 10t = 25, {4+ x4+ y=056

NoTE. Hometimes a special method will effect a quicker
and neater solution. For example, exercisc 37 can be solved
as follows: Add the four equations and divide by 3. Subtraét )

cach equation in turn from the result. O
8. r4+y=1, 39. x+y+z__t‘1§‘..’;.
y+z=2, zty—z+1£9
ftt=3, x~y—]—z—1—t~.—3
L+ =2 —x -y +aky =4,
oY
17. Worded problems. \

"\Idny worded problems lead to, hnear equatlons as was
seen in the section on linear eq;uatmns in one unknown.
Obviously there is no mechm}ical method which can be
used for setting up the cquations for all such problems, as
therc is no mechanica mpm( ess which can be substituted
for the process of thinking. Each problem, or rather each
type of problem, mtgt be thought ouf independently. The
ncaning of eaghi@tatement must be clearly and definitely
understood, sand the various statements must then be
translated (dhfo mathematical equations. However, for
certain s p}oblems involving mixtures, rates of speed, or
rates. \of interest, a tabular arrangement such as the one

§&d™n the following illustrative example may be of
assistance in determining the equations which will lead to
the solutions.

Example. _ .
A grocer has two grades of coffee, selling at 40 cents and 50 cents
a pound respectively. How much of each must he use to make a
mixture of 100 pounds, to sell at 47 cents a pound?
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SOLUTION,
No,of . Price _ Total |
Ib, perlb. ~  price
1st Kind z 40 40z
2nd Kind Y 50 b0y
N\
Mixture 100 47 4700
O\
T +y = 100, 7N\
40z 4+ 50y = 4700, W
These equations have the solution R4 4,
z = 30, Y =’x273,:
- which can be verified. o)

It will be noted that for any rgtir:iri the table the product of the
numbers in the first two colunins 'gives the number in the third
column, or that the numbeg i the third column divided by the

number in the first columftor second column gives the number in
the other column.

P4\

M\

In problemsiinvolving rates of speed we have the funda-
mental relation fime X rate = distance, and in problems
in simple:iitterest we know that principal X rate = annual
interesiy Consequently the above tabular arrangement can
oft'e\Q'“Bé’ used to advantage in such problems

*

A EXERCISES 1. C

\‘;

1. The sum of two numbers is 73, their difference is 41, What
are the numbers?

2. A child’s savings hank containg $5.05 in quarters and dimes.
If there were three times ag many quarters and half as many
dimes the value of the contents would be $10.65. How many
coins of each kind are there in the bank?

3, In 6 years a boy will be s old as his brother; 3 years ago
he was £ as old as his brother. Find their ages.
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4, A man wishes to place a fence around a rectangular lot. The
fence costs 75 cents per foot for the sides and the back of the
lot, and $1.75 per foot for the front, making the total cost
$625.00. By using the cheaper kind of fence for the entire lot
he could save $100.00. Find the width and the depth of the
Iot,

5. A salesman receives 12 per eent commission on some articles
which he sells for $1.50 apiece and 15 per cent commlsslon
on some others which he sells for §2.00 apiece. His carn-')
mission was $12.72 on a certain sale amounting to $92 00.
How many of each kind of artiele did he sell? N

6. A man has two sums of money at interest, one af 3'per cent,
the other at 2% per cent. His annual income frOm these two
Investments is $195.00. On account of a.drep in interest
rates he finds that he can obtain only 2 per -gémt for his money.
"This decreases his annual income by $45‘ﬁ0 How much does
he have invested at each rate? O

7. A man has two sums of money at interest, one at 3 per cent,
one at 2} per cent.  His annual iitcome from these two invest-
ments is $206.25. If he eould dbtain 2 per cent more on each
investment his annual incomhe would be increased by $40.00.
How much does he haye at interest, at each rate?

8. A man has three s/of money invested, one at 2 per cent,
onc at 3 per cent, and one at 3% per cent. His fotal annual
income from thé three investments is $246. The first of these
vields $14 péhyear more than the other two combined. If all
of the an\y were invested at 2% per cent he would receive $4
per year-more than he does now. How much ig invested at

. each'rate?

9 An ‘airplane made a trip of 200 miles against the wind in 1

{“hour. Returning with the wind it took only 50 minutes,
Find the speed of the plane in calm sir and the rate of the
wind.,

10. A motorist can drive from A to B in 2 hours and 24 minutes.
By increasing his speed 10 miles per hour he can cut the time
down to 2 hours. How farisit from A to B?

1. An army officer made the first part of a trip on & plane which
flew at the rate of 210 miles per hour. At the landing field he
was met. by a jeep which took him the rest of the way to his
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12.

. tion requires only 10 seconds to pass it. \3¥Fow long is the train

S 1.

14,

15

.

destination at the rate of 40 miles per hour. The trip
required 3 hours and 15 minutes. On his return trip the jecp
traveled at the rate of 50 miles per hour and the plane which
he took flew at the rate of 200 miles per hour. The return
journey required the same amount of time, but this included
9 minutes which he spent waiting for the planc to take pff.
Find the total distance that he flew and the total distancobhat
he traveled by jeep. Ke

A train is moving along a straight stretch of track parallél toa
highway. An automobile traveling 60 miles peh hour in the
same direction as the train can pass it in 4@seconds. An
antomaobile traveling 60 miles per hour in fa& opposite direc-

and how fast is it moving? N _
A train 250 feet long passed anot;lﬁ\ér 998 feet long, traveling

in the same direction on a papallel track, in 16 scconds. If

the trains had been trajveling.iti opposite directions they would -
have passed each other in‘half the time. Find the speed of
How much tin and hawmuch iron must be added o 50 pounds
of an alley contaifing 10 per cent tin and 25 per cent iron to
obtain an aﬁogcﬁnta.ining 25 per cent tin and 50 per cent iron?
A grocer ; rec grades of coffee which cost him 12 cents 2
pound, 15.cents & pound, and 20 cents a pound respectively,
He blegded 100 pounds which he sold at 22 cents a pound,
thigheing $7.60 above cost.  If he made half of the blend out

che cheapest grade, how many pounds of each of the other

{rades did he use? .
) \16’. A’'board 8 feet long is supported at a point 1 foot from the

center. A weight of # pounds is attached at the end of the
3-foot lever arm, a weight of ¥ pounds is attached at the end
f)f the 5-foot lever arm.  In order to make the board balance
it is necessary to attach & 33-pound weight at a distance of
1 oot from the weight of z pounds. If the weights z and ¥
are interehanged 1 is necesssary to place a 6-pound weight
with the y-pound weight $o effect s balunce. Find z and ¥
(2} neglecting the weight of the board, (b) assuming that the .
board weighs % pounds per fook, .-

17. A man has 72 Savings Bonds of total face value $2475.
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i8.

19,

20.

21

N

The denominations of the bonds are $25, $50, and $100 respec-
tively, e hag gix times as many 550 bonds as he hag 100
bonds. How many of each kind hag he?

Two pipes running simultaneously can fill a tank in 3 hours
and 20 minutes., If both pipes run for 2 hours and the first
is then shut off, it requires 2 hours more for the sccond to fill

“the tank. How long does it take cach pipe to fill it alone?

SvacEsrioN. et z = no. of hr. for 1st pipe to fill tank.
Then 1/z is part of tank that 1st pipe ean filf in 1 hr, Use’q,;\
similarly for 2nd pipe. Solve first for 1/z and 1 /4. O
Three obgervation planes, 4, B, and €, working tg)g“e};hei', can
map & certain region in 4 hours. Planes A ané B can map
the region in 6 hours, planes B and € can map.it in 6 hours
and 40 minutes. How long would it takggach of the planes
working alone to map this region? _ L ¥

Observation planes A, B, and €, wotking together, can map a
certain region in 4 hours.  After they*had worked for 3 hours
7 developed engine trouble, as a'‘Gonsequence of which A and ¢
had to finish the job. Thig“required 2 hours more. It
turned out, however, that ote-third of the photographs taken
by B were spoiled. Méanwhile this plane had been repaired
and was sent up withoplane € on the following day. They
took 45 minutes‘ﬁphotograph that part of the region for
which B’s phatespaphs were spoiled.  How long would it take
each plane wirking alone to map the region?

The sm.n\'af'{he digits of a two-place number is 9. If the
digits age’reversed the number is decreased by 45. Find the
nup@er.

SuGeEsTioN. Letz = digit in tens’ place, y = digit in units’

\_blace. Then the number is 10z + y.

22.

The sum of the digits in a three-place number iz 13, If the
digits are reversed and the resulting number is added to the
original number the sum is 827; if the resulting number is
subtracted from the original number the difference is 297.
What is the number?



\;

CHAPTER {ll

Factoring

- KoY
18. Integral rational expressions. 'S

An integral rational expression, or polynomialj\in certain
variables, for example, z, ¥, 2, i3 a sum of ti‘e(nis of the type
kx*y#, in which k is a constant and thelexponents a, b, ¢
are positive whole numbers. The ex;&zssmns

62 4 5z — 2:173]— 7,

43y — 3yt <
N
xgy\/%;%.gz

are integral ratkona\expreasmns in the variables involved.
The expressions \i D)

Y
SOTV2ZHay, P+ 3;;2

are integral rational expressions in x but not in y. (See
Set@sn 8.)
«The degree of a term of an integral rational expression
"\is the sum of the exponents of the variables in the term.
Thus, 42% is of degree 5in % and y, although it is of degree
3 in z alone and of degree 2 in y alone. The degree of an

integral rational expression is that of its term or terms of
maximum degree,

19. Factoring.

. By factoring an integral rational expression is meant the
process of finding two or more integral rational expressions
38
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whose product is the given expression. Unless otherwise
specified, we shall limit the process to factoring integral
rational expressions whose coeflicients are rational ¥ num-
bers, into factors of the same type. Sueh an expression
will be called prime if it has no other factors of this type
besides itself or its negative, and 1 (or, of course, ¢ times
itself and 1/¢, where ¢ is a rational constant different from
0). O\

In the following sections will be given some of the types -
of factoring which are of most frequent oceurrence. /3

20. Elementary factor types. ."’:\!\

Common monomial factor: \

>
ax + ay = a(x + gl (1}

Example. N N
52 — 10z% = 5l — 22).
Difference of two squares{'f

@ — = (@ +b)a—-b). . (2)

Example, \ 3
“\11}3:9 — 25y = (4= + 5y)(dx — Sy).

Sguaﬁ;'e;j%' a binomial:
O @t + 2ab + B* = (a + b, @)
a® — 2ab + b* = (a — )™ 4
For a trinomial to be a perfect square, one term must be
twice the product of the square roots of the other two.

f‘A rational number is a number which can be expressed exactly as the
Tatio of two whole numbers; an irrational mumber is one which eannot be so

expressed. Thus, 2/3, —17 /6, 5, and 0 are rational numbers; V2 and « are
Irrational nurnbers,
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Example.

1622 — 24x 4- 9 = (4x — 3)2
Trinomial of the form:

24+ et bx+tab=(x+a)x+b). AB)

N s
. A\
Examples. ~A

P L5z 6=+ @+, A
2? — 52+ 6 = (x — 3}z — ),
2+ 5z — 6 = (x+ 8)(x L),

22— br — 6 = (z — 6)(A\KM).

It will be noted that in factoring this type we must find
two numbers whose productigvthe constant term and
whose algebraic sum is the eoefficient of the first-degree
term. R f’; N .

If the constant termus positive, these two numbers will
have the same sign/mamely, that of the first-degree term.

If the constant-derm is negative, the numbers will ha'we. .
unlike signs, ald.the numerically greater will have the sign
of the first-dégree term.

Trinomial of the form:

I
N80+ (ad + b)x + bd = (ax + b)(cx +d). (6)
’\

L

"\‘Th1s is like the preceding type, but is usually more diffi-
~\Jeult to factor.

Example.
62% + T2 — 20 = (22 + 5)(3¢ — 4).
In factoring this type by inspection one can write down

various possibilities until he discovers the right combina-
tion. For ingtance, in the present example he might fry
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several combinations, such as (6z — 1)(z + 20), before
dizcovering the correct one.
(In Chapter VI it will be shown how types (5) and (68) can
always be factored by salmng a quadratic equation.)
Grouping:

axtay+bx+by =alx+y) + blx 4y O
= {a 4 b)(x + y). (:7:\):\~

.”\
« N\

Example.

3% — 6mk — k + 2m = 3k(k — 2m) — (i’»—?'m!}
= Bk — 1)k — 2m ~\

N

Type (6) above may also be factored by\grouping.
N\
Example. QY
622 -+ Tz — 20!
Multiply together the constanﬁfﬁ'c;m and the coefficient of 22,
q@é\m = —120.
¢ \q,l

Find two factors ef\—120 whose algebraic sum is equal to the
coefficient of z, viz;,’}"f These factors are 15 and ~8. Then,

4—7x—-20=6x2+1ax—8x~—20

\\? = 3z(2x + 5) — 4(2x + 5)
R\ = (3¢ — H2x + 5).

%\More complicated types.
Sum of two cubes:

@ + 5% = (@ + b)(a® — ab + b%). @

Difference of two cubes:

@ — B = (a — b)(a® + ab + BY). @)
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Cube of a binomia.l:

a® - 3a2b + 3ab® + b = (a 4 b)3, (3)
a® — 3a%b + 3ab® — b* = (a — b)3. 4)
Sum of two odd powers: The sum of two odd powers is
always divisible by the sum of the numbers. O
.\:\
Example. o\

@ + b = (a + b)(a* — &% + a%® — agf(q;z,bi). )

Note the form of the second factor: Th}\coefﬁcients of
the various terms are alternately 4-¥N\and —1; the ex-
ponent of a decreases by 1 from teftn to term, while the
exponent of b increases by 1 {6 term to term (b first
appears in the second term). | O

Difference of two odd pawers' The difference of two odd
powers 1s always divisible by the difference of the numbers.

Example. R
ab — b-”'\%.‘(a’ — b)@* + o' + ¢ + ab® + bY). (6)

The diffetence of two even powers should be factoved as
the difference of squares.

{ ’\5 v
R ~'§xa mple.

\ as — b = (a%)? — (b9)2 = (a? + Y (a* — b?)

= (a4 b)(a® — ab + b9 (a — b)(a* + ab + D?).

Each factor should be refactored if possible until the expres-
sion is reduced to prime factors.

Nore. If we had not limited the type of factors to be con-
gidered to integral rational expressions with rational coefficients
(section 19), * — 2y2 could befactored into (x + yv/2)(x — ¥v'2),
and x — y could be factored into (v + V) {2z — V).
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The sum of two even powers cannot be factored as such.
Note, however, that
Py = @F 4 G
= (@ + ) — 2% + )7
= (@ + )@ — 2 + ).

See also example 2 in next section. ¢
.~0\\

22. Other types.
Frequently an expression can be reduced to the,d,tﬁ'erenr-e

of two squares. \:““}\
Example 1. N
AR —2y>+ )
=2t — (y L7
=[x+£y-Z)[x— (y — 2}l
@¥@—@w—y+d
Example 2. ~
S
, ot 4y
N
"~ Add and subtra{;t;iéix?y?'

\ /
ot + Ayt o+ Aoty + 4yt — doty?
\\ = {2 + 29" — (2zy)®
O = (&* + 2 + 2zy) (& + 2y* — 2ay).

\”\!:';a;npfe 3.
’ xt — Grly? -+ 25yL

This would be a perfect square if the middle term were
+30x%2  If we add and subtract 3622 we get

Ozt — G2%y® + 25yt = Oz* + 30zty? + 25y* — 362%?
(82 + 5y%)® — (bay)?
= (3z® 4+ 5y* + 6ay(3z? + By? — Gay).

i
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It should be remembered that
@+ b+ c)=a®+ b+ c* + 2ab + 2ac + 2bc, (1)

and that in general the square of a polynomial 1s the sum of
the squares of ifs terms plus twice the product of each

mulivplied separately by every term that follows 3t. Remem-
bering this sometimes enables us to recognize a. iehgthy
expressxon as the square of a polynomial. O

ol
77
< %

Example. \\
9x% + 6oy + y? — 122z — dyz 4 422 (?x 4y — 22)%

Sometimes a polynomial such 3&
2 — 2x -—-~2x -3,

in which the coefﬁelents are all whole numbers, that of the
term of highest degree'being 1, can be factored by inspee-
tion. Possible fa,({tors are & + k, where k is a factor of
the constant t%ni In this example the possible factors
arex + 1, 3, x -+ 3, x — 3, the last of which is found,

by division, ™6 be 1, factor. This method will be diseussed

furthe'r :iix.‘Chapter XII1.

QQSuggesflons for factoring.

2% The secret of factoring is the ability to recognize type
8 forms The following suggestions may prove helpful: '

First remove monomial factors if any exist. It may then

be possible to classify the expression under one of the
following heads:

Binomial:

Difference of squares.
Difference of cubes.
Bum of cubes. g

3
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Difference of odd powers.

Sum of odd powers.

Reducible to difference of squares by adding and
subtracting a perfect square.

Trinomial;
Square of binomial. \
Type 2° —i— (@ + b)x + ab. Ko
Type acx® + {(ad + be)x + bd. NN

Reducible to diffcrence of squares by addmg énd
subtracting a perfect square. K7,
..,\ v
Polynomzal of four or more terms: \/
Capable of being grouped. N
Reducible to difference of squares by rearrangement,
Cube of binomial.

N/

Square of polynomial. R\ '
Divisible by = =+ k, where ki l;S ‘s Tactor of the constant
term. )

Always see whether gﬂ:ﬁr factor can be factored further.

A cheek is aﬁorde&‘by multiplying together the factors
obtained. The product must equal the original expression
if the work is cort dot.

\~
\» EXERCISES Hil. A
I‘amtor completely:
‘kbsey — fayz, 2. 14ab? — 4902 — 2labte?,
3G — 2542, 4, 8laht — 16.
b. 18zt — g2, 6. 75a* — 147a%:2.
. 9a® — 24ab + 162 ‘8. 64zt 1 80z%yz + 25y%2.
9. 98¢% — 112a% + 3222 10, 2 — 8z -+ 15.
1L 22— 45 — 19, 12, 28 + baly — 24ay
13. 10 + 3¢ — 42, 14, 12 — x — 32
18222 5 g, 16, 6x* + 11z — 10.

17, 1202 + 35z + 18, 18. 1827 + ¢ — 4.
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19, 18z — 3%y 1 2097 20, 2446 + 1lab — 18b° _
91, 3ax -+ bay + 6z -+ 10y. 99, 122 — 12ay + 16zy — Yaz.

23, a3 —a*ta—1 94, ¢ ~ b+ a-tb
95. 3+ ¥ +atbd 96, a® -+ b2 — ¢ — 2ab.
9T, uz — 2ty — 2 28, 9% + 4y — 422 — 12z,

99, Oa + 6ab + 20y + 4% — xt — Yo
30. 8ad+4a?+4ab+4bd—4ac——4cd——2bc+b2+c?+4@2\.

"~ g1, 8a¢ — b8 — 12¢%b + Gab®. 32, @ — 8.

33. x° -+ 8. : 34, 8lz* — ¥t O\
36. af -+ bo. 36. z° -+ 32. o\
87, 3z° — 12y° 38. a’ + b A\

39, a — b%. 40. 1250 -+ 2790

41, a° 4 b 42, b — B2 N

43, 8a* 1+ 2% 44, 162* + 23z 4 9t

45, Ozt — 21x%y? - 4yt 46. z¢ — ADsPy® + 9yt

AT, 9504 + 45a%h® + 40bt. 48, Gaad ¥ Tath® + 4b4.

49, zt — 0z 4 Oyt 50, i 4%y — 1291

61, 6zt — %y — 15y - B2 & —

53, 2 — 4z + 3. B 2 42 6

BB, ar'? — abc?. AN B6 @+ L

!
-

Evaluate th?pfé{llowhlg expressions by first { act{}Tng them:

BT. (68)* — 67V B8. (99)* — (98)%
59. (999 ={(998)". 60. (55)* — (45)%.

MK
24. Highest common factor and lowest common multiple.

.;zﬂfie highest commeon factor (H. C. F.) of tw

or TOore
_texpressions is the expression of highest degree tHat can be
' divided into all of them exactly.

The lowest common multiple (T.. C. M.} of t§wo or more
expressions is the expression of lowest degrepe that B
exactly divisible by all of them.

" To obtain the H. C. F. and the L. C. M. of two or 100re

expressions, separate each expression into its pritk,e factors
The H. C. F. is the product formed by taking efich factor
ression;

c. M

non-appearance being called degree zero. The



EXERCISES 47

1s the product formed by taking each factor to the highest
power to which it appears in any expression.

Example 1. ) _
Find the H. C. F. and the L. C. M, of 2z%7, 4ay%, 18272,

SoLuTioN. Rewrite in the respective forms

‘sz-ys, 2%’9‘5’, D 322379.23. \ ¢
H.CF = 2xy2 O
L. C. M. = 223275 = 36z7y% N
Example 2, \ v

Tind the T1. €, F. and the L. C. M, of \
; p )

22+ 2ay + % @~ ¢, 20 — a2t

SoLurion. R\

2+ 20y + 1 = @+ g
=y = (@A P —y),
=2y — 29 = (&5 v) (@ — 2y).
H.C. Fes'\o g
S
L C.M. = (& + 1) ~ 1)a — 2.

AN/
o
1. Prove th‘s{jﬁﬁé produet of the highest common factor and the
lowest, . éommon multiple of fwo expressions is equal to the
Prq&hfc‘i’ of the two expressions.

EXERCISES il B

_ Find the highest common factor and the lowest common
multiple of the following expressionss

- T2a%32%, 324551

L2 =yt 2 2py 4yt

-8 — 5z 4 6, 2 + 3z — 18,

= 62 — 112 — 10, 1252 — 3 — 6;

6. 8lat — 1654 9a? — 4b%,

T 8lat -+ 1654, 9a2 + 452,

n oW D B



48 . FACTORING

[Ch It

8, 50x® — 18y% lbx + 9.

8. 1125a%4c?, 16875ab%’, 2025a°b%5.

10, 22 + 22y + % 22 o8, 2 —

11, 2 — 2%y + x?, 2 4

12, 2 — z — 6, 2 + 2 — 12, 22 — 9z - 18.
13, at 4 4b‘*, at — 207 1 20?2

14, 2% — ¢ o* — yh o\
16, 8 4+ 3%, at — yi Q\
16. 1522 — 8¢ — 12, 2022 — 39z + 18, 102x® + 13x K%
Ko
g
ok
\
N4
\/
4
o
N
"\\g‘
RN
{\«&\./
O
¥
/{}¢
AO
&
} 3



CHAPTER IV

Fractions

SO\
25. Elemenfary principles. N7
The value of a fraction is unchanged if the ﬁumergxfbg"'&nd
the denominator are both multiplied or both divided bipthe same
number, zero excepted, since (section 28) tfﬁ&{s?eciuivalent'
to multiplying the fraction by 1. \M
This principle can be used in reducing‘(\ﬁ"fraction to its

lowest terms. N
Exampfe. A\
dxy7z r;’;““v
Reduce ﬁxf'ygﬁ to lowest terms.

a"‘g\
SoLUTION. Divide\p\l}ilerator and denominator by 2x%3,
getting O
:‘i\./’ Iz
x\':\w 35°

A qu}a\t?on may be regarded as having three signs associ-
3@@:}{-‘3& it: the sign of the numerator, the sign of the
degominator, and the sign preceding the fraction. Any fwo
of these signs may be changed without changing the value of
the fraction.

Example.
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26. Addition and subtraction of fractions.

To add or subtract fractions we must reduce them to
a commmon denominator. It is usually best to reduce them
to their lowest common denominator (L. (. D.), that is,
the lowest common multiple of their denominators.

Example. N\
3 3 _ 9z 410 O\
6z 12 N\

The dividing line of a fraction performs thé same service
as signs of grouping placed around the nufnerator.

Example. \
z.\\d
3 2w—5_ 32-3-22r—5) {9r—4zx+ 10 5z+10
¢ 6zt 1222 AV 122 o112z

27. Mixed expressions. ,j{"::
A fraction can ofter be reduced to a mixed expression
(that is, the sum ofrg, fraction and an expression free from

fractions) just qs\n arithmetic an improper fraction i

reduced to a m{\;ed number (e.g., 2% = 42),
Exampfe.
On2e + 3z + 5
Redliée atded s t0 & mixed expression.
N\ z-+1

O

”\’;3 SoLuTioN. Divide 22+ 3z + 5by « 4+ 1.

2c +1 (= quotient)
2+ 12 + 32+ 5

222 | 2z
z-+5
x+1
4 (= remainder)
202+ 32+ 5
P e
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EXERCISES IV, A

Reduce to lowest terms:

" ‘3617 9 a* — 2ab + b .
" Basys ) a? — B2
2 — Tz + 12 2% — Toy — 8yt
o — i —- 4, —= . 2\
2*4+ 3z — 18 B P
g ot e—12 LWty &y
22 —x — 6 - a)z—y) O
Combine into a single fraction: ~<‘
7. L5, 8. 215, O
18 12 Ba®  6u 3
3 3 'y
9. + 2 . 10. -ia\;\ .
T—2y x4 2y x — g\ + 2y
N N\ é [ )
11. 5 - 3 . 19, _§_. _}_. S,
r—3 x—235 200 3be - dac
13, 1 B 1 - “::V.:‘
a®— b2 a®+ 2b -+ bt . Ny
14, @ __ A
a* — 2ab + b? aﬁ.\‘w;f};\ﬂ
5, 32 N
a—8b b — @\
N2

SOLTJ':I‘.\t‘(}.w Change the sign of the denominator of the
second\raction and change the sign preceding it. Then we

haye™
O 3 2 5
\' a—bTa—b'—a——*b
16.—£—-_.5 ] 3a 2a )
t~5 S—g 17'3a—2b+26--3a
13.~ﬂ—5 - L 6 -
(z~2)(w-+3) ' (z+3)(x—4)
1 2 3
18, + .
GC-p-2 G962 G-DE-n
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9 3 1
e
at. (aib)ﬁafb—L

a? b a
2. (@— b algbzb_.b ~a ~
23. 20+ 8b+ — - O
24, — 1 L :'3 '

25.

aT.

29,

x2+x—6"'2x2—x—6+2x2+5x+%

Reduce the following fractions to mixed :Q(ples:ﬂom

—6&:—1—12. 266 —55':—7
r—4 ) ?ﬁs\\+1
6z — 8Br 4 1 x3&‘o:c“—2’c—l—?
—_—" 28. 5
3 — 2 (NY 22— 32— 4
Ptdet —br—2 g2 —20:0—{—7-“
2t 41 ISR

28. Mulfiplica!ion oFfractions.

To multiply fra}stlons we multiply their numcrators to

obtain the nt.@xerator of the product, and multiply their
denominators to obtain the denominator of the product-
Factorsydemmon to numerator and denominator should be

dlwded\out.
\anmpfes
RN 2y_=
D ¥ ooz ayz ’
(@+®* ab  (@a+b) ab abla +1b)

@+b @ —b @t (@tb)a—b) (@ + )@ b
29. Powers and roots of fractions.
A power of a fraction is the power of the numerator

divided by the power of the denominator: a root of a frac-

tion is the root of the numerator divided by the root of the
denominator.
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AT X PERP
(’z;)—z?z’ \/5—9; (@>0).

30. Division of Fractions.

Examples.

To divide one fraction by another, invert the divisor and O\
multiply. A

Example. -

EXERCISES IV. B \
Perform the indicated operations al}fkéi,h\@ﬁlify:
xty*z®  Babic? a® +Ma .~ 12 a2 — 4
" datber 50 ' ,:qz”ii- 4 ‘@ tat+4”
22— 9 a* — b5z — 6 LB et 2+ 0

3. —_ . 3
=6 2—z—6  sSla+b a®—ab+ b
5 Du’rbed 12a%525 ~ 6 e—* 224+ 4
CAbeyt T Topr ,g"\\\ -y @4y
7. T8 T+ g\ g b—-a @' —2ab+b?
'x2—y27:1:4--:.4 '(x_y)z.' $2—y2_,_
9. (2:?;233 . qué'; ’a BpacE 10 Ty%? . (myz .asb“cﬁ .
ab%? i) atyz Cathir |\ 2y
1

( st OOrs®® | Sw

T \BusNT Gutnt) T s

12\% . (‘ers%: . gsmi 3) _
WY Uy rig

\ . 4 .

18 @ty + (o -y + ).

14, (1_.2)+(1_E).
X Y,
15, (1_?2+?f)+~’*’2—92.

T x?
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31. Complex factions.

A complex fraction is one which has one or more fractions
in its numerator or in its denominator or in both. The
methods of simplifying complex fractions will be illustrated
by the following examples:

N\
Example 1. O\
Simplify O
x 1 N
+ ¢.'\i“

t—1 x+41 AN

& 1 v
z—1 x4+ Dby /

’\ i

Sovurion. Multiply numel;atf)r"and denominator by the
L. C. D. of the fractions whieh occur in the numerator and
denominafor of the eomplqﬁftahtion. This L. C. D. is seen to be
(z +1)(z — 1). The ariginal expression becomes

QY

&+ 1)+ ;
\ll G VCER ere

x 1
:~?x,‘+ Dix —1) T (x + Dz — 1) 1

AL et et @) _24zte—1

AT EF e F e —atd

A\ 224+ 2r — 1
P - s
~\/ 2?41
\ 3
Example 2.
Simplify
’ .

» ]

: M
T 1
2z — 2+
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SoruTioN. Consider the fraction

1

- (2)
2x_a:+1

x

which is found in the denominator, The L. C. D. of the fractions, <\
occwring in the numerator and denominator of (2) is 2 (sinee .
" thore is only one such fraction and its denominator is #). Maltio
ply numerator and denominator of (2) by x.  Then (2) becomes

'N:ﬂ
_ oz 2’
Y a— )

and (1) takes the form :\\«

' @)

The L. C. D. of the frmatignszgccurring in numerator and de-
nominator of (3) is 222 —%* 1. Muliiplying numerator and
denominator by this givés )

%{‘\eﬁ.

2% 52~ 1 _ 22—z —1
28—z~ 5 2 — 22— 2
N
i"\.bt
A 7 EXERCISES IV. C
A\
Smplify |
on\)§'l 2 x + y
L 6_3 g & @
3
4 a
T+1
:c z+-——2
3. . 4,
T4 = r — -
x z



56 FRACTIONS [Ch, I¥ g

R T a b
PR —b a+tl!
¥y ooo® 6 & a4+ b
5 x oy ' ab
PR b
1 n 1 x y
S3e+7 3x-—-7 8 T4y x—y N\
7. 1 ‘xz_yz_x2+y2 ‘:‘\\' )
o @ z? + y? :Cg—?j::v{ v
z? ,.[}‘"
— 2N
9, 11 10, -2
1- r— 2
l1—= O _a:—l
<§Jm T — 2
Q' 1
11 ; ! 1 1205
1-—2 1 v’,;:::. 2—4+ 5
83—z a7 6—z
' 1 A a—=5
e o — A, .
13. 1 ) ;“\ 14 X ]
TR b i
A a+b+—"
NS 1=z a—b

23—;1}'&3—-2 x—2 r— 3
1 irr\*_?“ r—3 z—-1 -2
5’%’7"3 T—4 -4 z-—5

'fz\x—4_a:—5 x—g_x_4
) x 4y x4 o2
0,270 Iy, Fhay

Y Y _x y

-yt Bty z-y xdy
32. Equations involving fractions.
Before proceeding to the solution of equations involving
fractions, it will be well to consider what algebraic opera-

tions are, in general, permissible in solving equations.
!
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- Two cquations are equivalent if each possesses exactly
the same roots as the other.

The following operations, when performed on an eguatwn
always lead to an equivalent equation:

Adding the same number or expression fo, or sublracting
the sume number or expression from, both sides.

Multiplying or dividing both sides by the same non-zero+ N
number or by the same expression, provided that the expressum\
does not contain an unknown. £

These operatlcms and no others, were used in salvmg
linear equations in Chapter II.

The followrng operations, when performed on, ah. eguaiwn
. may lead {o an equalion containing extraneous roots that s,
roots which are not roots of the original equation:

Multiplying both sides by an expres}nbn containing an
unknown.

Raising bolh sides to the same 'm*tegml power.

It is therefore absolutely negessary to check the values
obtained in solving an equatitn when either of these opera-
tions has been performedd \For even if the work has been
correct, some of the vailﬁes may be extraneous roots and
fail to satisfy the eqﬁz}tlon

Example 1.:"

The equa{t.‘\o:ﬁ;c 4+ 1 = 3 has only one root, £ = 2. DMultinly
both sides by — 1, obtaining2z? — 1 = 8z — 3. The new equa-
tion hag fhe roots = 2 and z = 1, as can be verified by substitu-
tlon \Thus the extraneous root £ = 1 has been introduced,

_ \ Exampfe 2,

The equation @ + 1 = 3 has only one root, x = 2. Square
both sides, obtaining z? + 2z + 1 = 9. The new equation has
the roots # = 2 and £ = —4, the latter being an exiraneous root
miroduced by squaring.

In solving an equation involving fractions, we usually
clear of fractions by multiplying both sides of the equation
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by the L. C. D. If a common denominator other than the
lowest is used as a multiplier, extraneous roots are likely
to be introduced. If both sides of an equation are multiplied
by the L. C. D. of the fractions involved, any root of the .
resulting equation is also a root of the original equation,
provided it does not, when substituted, make any denomi-

nator of the original equation equal to zero. }\
Example 3. B \ \)
Solve the equation ,‘,'}‘\ ’

z—3 -4 g
\; .
SoLuTion. Clear of fractions by mql*nplymg both sides by the -
LCD,E-—4E— 3

Y udf

—4£ﬁ$’-15x+6
m’Fﬁ

This satisfies the mj@al equation, and is consequently a root.

- +\J
Example 4.5\
Solve t.h,(\e'éqﬁation

23“0 1 1 2

) = .
§ a:+1+ -1 -1
’\
¢ "' " Sowvrion. Clear of fractions by multiplying both sides by the
OV LCD, G+ e - D:

z—-14x+1=2,
2$=2, x == 1.

When we attempt to substitute the value z = 1, we obtain
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But (section 4) division by zero is excluded; hence 1 is not a root.

In fact, the equation has no solution.
EXERCISES IV. D
Solve:
L3 2
1 2 _ 3 -0 9, T 3 _
z—3 o442 x—3 x+2
5. 2x _ i =1. 4 3z © Ox =.1_2_ A
dr — 3 Bx4+2 2 2247 Te4+b 13 (D
5 2 N 13 QO
"4 242 z—2 : "z":".
6 o 1 2. LY
=20 zxz4+5 x—35 N
2 - \
7. 0 o i 4 2 ' AN
2 —25 x+5 wx-—05 RS
g 2B _drtl
"3x—2 6x+1 _
2 7 ) Y
9. U 10,0 _—— = 2
z+1 y—9 ’+2+y 2
1 2 s w1l 1
® TyT1 y—1 =0 e 2z Y 2
11, Tind the number, “x.l(}h when subtracted from the numerator
and added fosthe denommator, changes the fraction {% into
a fraction whose value is 1.
12, 1f 4 1& zkd'ﬁed to the numerator and subtrarted from the

O

deno hator of a fraction, the value of the resulting fraction
is 23N\ 4 is subtracted from the numerator and added to the
dem)mmatm of the fraction, the valuc of the reaultmg fraction
M3, What is the fraction?

A motorist set out from A at a certain rate and would have
reached B in 6 hours if he had continued at this rate. How-
ever, when he had gone two-thirds of the way he had a flat
tire which delayed him for an hour. During the remainder
of the trip he drove at a speed which was 5 miles per hour
{aster than the rate at which he had started out, and arrived
at B 48 minutes later than he had planned. How far is it
from A to B and at what rate did he start out?



CHAPTER V

Exponents and Radicals

N\
O\
33. Fractional exponents. O
Accordmg to the deﬁmtlon of ¢™ given in, sec‘tion 7, such
expressions as ¢''Z, a°, and ¢~ have no me@mng, masmuch

as that discussion dealt only with thewuse’of positive whole
numbers as exponents. We find it &eSLra,ble to give them
mea;nmgs such that the laws of \pronents as developed
in section 7, will still be valid. >

By one of these laws (@™%= a“‘m If we apply this same
formula with m = %, we ha,ve (@'™? = g. Thus, if thislaw.

o\ atft =Y.
L
Exampl& h:

o
”\‘.

is to hold, we must have.¢'? = v/a. In general, we define

@72 = /27 = 3.

~The symbol v/a (nth root of a) is called a radical. The

.,jmteger n is the index of the radical, the number a is the
() radicand.

As will be proved in Chapter XI1, every number except
zero has exactly n distinet nth roots, some or all of which
may be imaginary numbers.

If n is odd, every real number g has just one real nth root,
which is positive when a is positive, and negative when @
1s negative. For example, the real cube root of 8 is 2, the
real cube root of —27 iy —3.

If n is even, every positive number « has just two real
&0
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nth roots, one positive and one negative, with equal abso-
lute values. TFor example, the two real fourth roots of 16
are £2.

If » is even and ¢ is negative, the nth roots of a are all
imaginary. For example, the square roots of —9 are
imaginary numbers.

The principal nth root of ¢ is the positive nth root of &
when a is positive, and the negative nth root of @ when g\is)
negative and n is odd. When » is even and @ 15 negabive
we do not define the principal nth root of &.

The symbol al* = ~/q will be restricied lo mean the princi-
pal nth root of a when a is a real number '&%ewmt from
zero.  As has been stated above, when ¢ ig\egative and n
is even the nth roots of a are all imagi fgnumbers. Such
numbers will be diseussed in sectiom4of the present chap-
ter and more fully in Chapter XIF. For the present, in
order to avoid them and to aveidambiguous signs, we make
the following stipulation: Ifibe index of a radical is even,
all literal numbers (except ‘ekponents) occurring under the
radical sign represent, pesitive numbers and are such that
the radicand is posi{iye.

We have theng

O amin = Y = (Y
R/
EJ(ip{Qfg’ 2
N\ (64)% = (VB84)® = 4* = 16.
3’4;.~\Zero exponent.

If, in the relation a™/a® = a™ ™", we set m = n, we are

led to the result

am
= .
a—m—a”"“”‘-a
But
am
— =1, a0
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_ Cbnsequently, we define
a=1 a0
We assign no meaning whatever to the symbol 0°.
Examples,
P=1, (Ga)=1 39=3.1=3 \
35. Negative exponents. A C.\'

Similarly, if the law a™/a® = g™ is to hQLd for m=3
and #n = B, for example, we must have

z”’
. N\
a \/
N
a A,
But L&
ad AN
— = s_”
a5 ’”,&a‘ﬁ

and if these two resuits are to be consistent, we must have

1
a? = F gener\al ‘we define
\ m 1
\ a’ = pef a =0
Exampks‘-

> 11 1 1 1
\s 3-—2.__=_, T
\w 3z g 8 U3 Y& 2

“\36 Summary of laws of exponents.

N With the foregoing definitions of fractional, zero, and
negative exponents, the following laws hold in general:

aa =am+n

am
pri am a = 0.
(@)™ = a™,

ﬂam - (%)m —_ am}n'
a't" = (ab)™,
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EXERCISES V. A
Perform the indicated operations and simplify the results:

1, (36)v2 2, (36zie)re,

3. (27a*T)8 4, (dah®),

B. (6441?12, 6. (640171,

7. {Bda")Vs. 8. (18ale)4.

9 Sxt 10. {(5x)-L
11. %xl,-'s . %xlm_ 19. %33”3 = i-’r'”i- ’:\:\.
13. (_2.1.7. xlfz)l,fa_ 14, (‘1’1‘3‘ xuz)z_ \\/ ¢

-2 -2 G
15, (z) : 16, (— %) : RS
17, (% 22y 18, (o ¥n N
18, (393, 20. (3z%)". y
21 (Bdat)?, 22. (64a—2) 2
22 o ©
SO
@ afTf"
Al 20T 20 250y 21T\ ~218

% (271:* ) 26, { GLa"rs ) :
o7 (1253: Y212\ .,“2¢§ ‘(s—la-ab-ﬁ')—us_

" \64a b AN T 270

39 . 44 e gu? . (16)-V2

= I A iy
2.27 — (27)2#3 > @7~ 4 (16)1

3l — 32.
§-16 — (16)‘m 2.27+%-16
v (z + )
- L
3 “ .\a“ e e o 36 6a—2 + (ab)™t — b2 .
— a—l + a- * a®h—2 + ab—l — 2g0

\ ( —c) +(b+c)
ARNE]

L0 -0

( I)ﬂm
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39. (2092 + ByM? — 3xU%)(3ah2 — 4%,

40, (32" yUs — dgtimys 4 Trimus) (5pimpln _ go-tisyas)
&1, (g9 — 20U — o1 (42912 . 5g),

42, (52 — 2022 + 20z — 6) + (P* — 33117,

43. (6252 - Tah/%'— 20042 4 12271/Y) = (3zV2 — 45712,

Any number may be written as the product of a num_b,er
having a single nonzero digit to the left of the decim\a]\pomt,
‘and a positive or negative power of 10. A numbergo writfen
is said to be written in scientific notation, Writc'cach of the
following numbers in seientific notation: )

4. () 14700000; (b) 0.000,0328.

SoLuTioN. (a) 14,700,000 — 13{?5( 107;
(b) 0.000,032,8°3.28 3¢ 10-5.

45, 4,560,000, ~48." 375,000,000.
47. 0.000;168, 048, 0.000,002,5.

49, 32 million. SV B0, g
b1, 92,900,000 (numperof miles from earth to sun),
52, 2,655,000 (aupgber of foot-pounds in 1 kilowatt-hour).
83, 0.000,064,38(wave length, in centimeters, of red light).
. 0.000,0(}0,%73 (number of horsepower in 1 joule per hour).
. A%
Perform the indicated arithmetical operations and write
he Fesult in scientific notation, (It is best to write each
L mumber in scientific notation firgt.)

(085, 26,000,000 X 1,500,000,
N/ 56, 0.000,03 X 0.000,000,6.

57. 17,000 x 0.000,000,03,

b8, 15,000,000 + 62,500,

59. 16,000,000 <- 0.000,64.

60. 0.000,009,6 + 0.000,012,

61, The speed of light is 186,000 miles per second. A light-year
i8 the distance that light travels in one year. Find to three
significant figures (see section 129) the numher of miles in
alight-year, expressing the result in seientific notation.
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37. Removing factors from and infroducing them into
radicals,

A factor which is a perfect power may he removed from
underneath a radical sign as in the following illustrations,
in which the literal quantities are to be regarded as positive.

V&' = V9r*Ve = 82V, A
VB0 = V25522V 2 = 5zyV2z, O
v 16a5y°2% = v 8028 \3/2@;22 = 23;2%43/2—% ;."}‘~

Inversely, a factor may be introduced undei"’;.\a radical

glen, thus:
ign, thus O

3m\/y_—\/_\/y_—_\/9@2yz

38. Reducing the index of a rqdlcqf

The following example 1Ilusm'ates how the index of a
radical can sometimes be reduced

V'365% = (69:)2 AN62) = (62)12 = V.

This shows one adva.n\ba. e of fractional exponents.
&7 Exerases v. B
Removg"ﬂ"pa*fect powers from beneath radical signs:

1. «/Z@§ 2. V75a%,

3. Vstabiidoe’. 4. V162

5«%64%%0“ 8. 49z,

?\VO.sox%. 8, V0.250m%n,

9 Vi1zp iz, 10, vV —16z 2.

. \/27@2&‘ 19, [l
4yt 273:31;

13. V1287, 14, V103682

Introduce all coefficients under the radical signs:
16, 3V/zy. 16. 4oy>Vay.
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17. abW’ 18. 2ab%*V abe.
19, .- v 1z 20. i—x V100zy.
Y
xE +$ + 3
21, (x + ) 2. (z — 3 u#
23, & 24, a2V qb. '
25. a:mf 2. 26, Ve, Ko
e\
Reduce the indexes of the following radicals: | ™
27. V360, 28. V8.
29, Véda®, 30. V6dal. \
4] 2502 6 278
31, - 32. ,/ SO
\/1691)2 3B
33. ¥ x¥ytes, 34 Vﬂ% yiat,
35. Vaoyso, 36 A g,

39. Rationalizing the drenbmmqior

When a radical ogcitrs in the denominator, the denori-
nator can be ratwgahzed (that is, freed from radicals) as
shown in the K}{gmples below:

Examp\:'e} ;:
) L1 VB VB 1
:"\.;“ \/3“ \/3- \/3- = 3 ar 3 \//go
’\\‘.

* The principal advantage of rationalizing the denominator

Thus,+/3 = 1 27321, and in example 1 it is easier to evaluate
1.7321 1 . .
3 than 17391 There is no advantage, bowever, if

one is using a caleulating machine or logarithms.

Example 2.
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We rationalize in the same way when a fraction occurs
under a radical sign. .

Example 3.

E

o e

When the denominator is av/b + ev/d, we multlplgr"
numerator and denominator of the fraction by av/b - ‘C\/ d;
if the denominator is an/b — ¢v/d we multiply by a\/b +
¢v/d. This will eliminate the radieals in the deneminator,
since the produet of the sum and difference of %o numbers
is equal to the difference of their squares. , o\

\\
Example 4,
1+4/2 14+v2 3 \/‘ \/3 \/_+\ff V242
V3+HV2 T VB3 Aa— x/i (V33— (v2)?
_ V3—V2+V6r2

3-2 = +/3— \f%w’_ 2,

\’\\

() EXERCISES V. €

Ve, )
Rautionalize the denominators of the following fractions or
remove the-denominators from the radical signs:

L2 ) 2
Y z :
‘;-_ * s Ta " 60 3 h
e =7 i
7. 2 . 8, L . Al .
Va4 b Sy 2y?
3132 1 1
10, /. . 12, —— -
\}41; 1. = =
1 4 I
18— . 14. . 15, ————
VT V3 VB + V3 Vet Vy
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3+ V2 : Vil — V3 a+vh

Biove TvinTvi Baowv

19 M. 20 i:_\/g 21.41._.

" Va+ Vb T AVE A2 1— V24438
1 1

BITVEF BETVE VO
1 . O\

* A= Vi- B O

25. Show that- the denominator 1 4 22 (L.e., lgl-‘ \3/5) can be
rationalized by the multiplier 1 — 25 4 x\"f
Rationalize the denominator of QO

1 AN
26. aiff 1 pis 2. B 2 s

Find the decimal values ,pf:t'.ﬁe following expressions, cor-
rect to thousandths, firsfrationalizing the denominators:

28 A . 29'_3_v 30 \/2:
L3 \/g w“ "»\/i . 3
a, 2H VB N, 10 VI+AVE

EEE OGN Ev: MRV v

40. Reduction of radical expressions to simplest form.

Au\‘éﬁiﬁression containing radicals is usually regarded as
bei\;gg:‘in its simplest form when

N (1) no facior can be removed from a radicdl,
(i) no index can be reduced,
(1) there are no fractions under o radical sign,

(iv) there are no radicals in o denominator.

EXERCISES V. D
Reduce to simplest form:

L V18aes. 2 V7B, 3, Vier'y' .

—_— 3 ']
"4, Vo50a%ter, - [8ab _ J45x -
4. V25005 5 */55 _ 6\

k;
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-~ 2z 8 Hu 9 \3/1353
By " V162w ‘N7
811z 1 i
10, 4/ 11. ~ : 12,
36y? Vigy? vV _8at
1 2 1
13, ————— . 14, - : 15, —————.
RN Vaoar VTRV
AT — 86 .\‘ ’
16, —— = 17, {(49x)—13. 18. (8zx7)—2fs, NN
5v7 + 2v/6 (49) @Y 9
| 1 ~N\
o — —= laa—l e . B
7 V'3 V2 U3
19, — . 90, ———— 2. o1, Y2 LV¥°
- \/2 vi+ V3 A\ L
V3= N3 \\\/5 V3
3,2 \/ \[ SN
o VI V3,  Oge, Y23
54 N \F \/1
NRRVE \/ 19 573
25, Vignisynrs, 26. \/x:aﬂ‘m 97. Vb,

g AT+ V3 1— /6
28. Vigirispini2 99, - 30.
‘ ST VEVE TFVE- VB

41, Addition a{'id"'subtruction of radicals.

Radicals ofin'be added or subtracted only when they have
the samexgd‘ex and the same number under the radical sign.

Exam;:lfe
@‘é+5¢+3¢2— Vi=(@2+5— DVE+3v2
= 643 + 342

42. Multiplication of radicals.

Radicals can be multiplied only if they have the same
index. (But see example 2 following.)

Example 1,
V3VE = 3U2. 5B — 306 . 526 — /T EE = 3T, 58 = VE7B.

N
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Example 2.

A/BVF = JU2. g1 = FUHNE = 3 = P = VOT,

43. Division of radicals.

Division of radicals is usually best effected by the process

of rationalizing the denominator.

this is not necessary.

Sometimes, howewer,
(See examples 1 and 3 below.)

O\
Example 1. O )
V6 = § =3 )
V2 2 N\
Example 2. A
vi_vi i v
Vi w5 % b
Example 3. zf:;':‘“
Ry
\\;_g \g”: G611 = gus — \/6
Exampfe 4\\
\N/é 611’ 2 66 -f/-_g 8 63 .
| \ 3~ gus = o5 .\6/52 9z = ¥ 4.
' "i\‘fxampfe 5.
\y Ve _ 6Ur s
F\?_B 51!3 i'z.fﬁ ‘,.)2 534 54 *

1. 5
P= = Vs 5= = \/135,000-
[

EXERCISES V. E
Simplify, and combirie }ke terms:

L 8v2~ 3v2 + 4v2. 2 2y + vy — 3V
3. 82 — 24/R. 4, 3v/58 —

2216 + +/216.
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2z H3x I\
5- ‘V/%- + E . 6- (5) -
7. v/64 + V64 + V64 + VB + V64

1‘12

Q

o
()

10. (3)‘“ (_oi_)ﬂ? +- \/5400 + v0.002.

ke

o

5 "
25 3 A\
11, \j + V325 — -4 )= —=5-
145 fa\\
12, 210 — 34 4 4 (a) - a—;s - ( o Ot a2,

13, V225 -2 4 228 - 2V 1007 + 3 103 % V10002,
14, (gusyuz U, gl g gl xlfs "

NS

Perform the indicated oparatlons and simplify results

16. /6 - /13. M8 VB V5
17, V722V 4975, \'\~.. 18. /3 V3.
19. /2. V3, 20. V2. V5.

2, V2.3, x/-iv/“ 22. V8- V16- V32
23, 3-t3. g, {2?)-1;27 24, 515, (25)-26 . (125905,

1, 1. \ ON3 f3\84
2. 3 Ve sVa. 26. (5) (&-) .
2 33 28. (2V/2)".

29, (‘\X5+ V2 (V3 — v3). 30. (/3 — V32

3 W6 — 2V3) (V2 + 3v).

25 — VB)(V5 + V.

B, (VZ+ Vi + Vo) vz — Yz + V)

34, —b 4 VB — gz —b — VP2 — dac
2a

2a
36, (x_fz_i_ziﬁ)(x_ﬁ—2\/§).
2 3

36. V115 + /23, 37. V125 + V5.

-
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38. V33 + V2. 39. V5 + V5.
40, v/5 + V/25. 41, /5 + /6.
49, V22 + V6. 43, Vaahic =+ V3.

— . —
Mﬁ—\/f %.\jé-:—\/f-
Y z Y 2 .
1[qd 3la 312 A2
Y e S oAl A Q
AR R S
V2.

48. (V3z + Viz + Vo) + .

RE )

49, Find the value of 22 — 6z + 7if & = 3 — v/2.
—_
50. Findthevalueof%2+6x—3ifx=w'-

) - 3
51. Find the value of 922 — 24z + 11 if e “K"

52. Find’the value of #* + px + ¢ i :v\\: —3(p + v — 4y
53. Find the value of 2 -+ pr -h gz = (» -+ vp* — 49).
QO ~b ~ ViF — dac
N 2¢a

56. Find the value of o° i — 12if &z = 2v/2 — V4.

44, Complex numbers.*

A negative Aumber has no real square root, for no
positive orynegative number, when squared, will yield &
negative nmber. Consequently, in order to solve certain
equati@:}s\, for example 2° + 4 = 0, it is necessary to intro-
ducednew kind of number, called an imaginary number.

54. Find_the value of ax? + bi\+ cif = =

~Jhe imaginary unit is the number i having the property

A= -1

It is assumed that this new number obeys all the laws of
addition and multiplication assumed for real numbers.
From the definition of 4, it is seen that we may write -
VIl =i, V_d = VeVl = 2,
V-3 =v3VI1 = V3.

* Seg also Chapter XI1.

-



7 44] COMPLEX NUMBERS 73

A number of the form a -} b2, in which a and b are real
numbers, is called a complex number, for example, 2 — 3i.
The number a is called the real part, and bi is called the
imaginary patt of the complex number, b being the coeffi-
cient of the imaginary part. In the example given, 2 is the
real part and —3¢ the imaginary part. 1f b > 0, the com-
plex number is called an imaginary number. Thus, 2 — 32
and 5 are imaginary numbers. If & # 0 and a = 0, the( )
complex number reduces to the form b, which is calledg
pure imaginary number, for example, 5i. If b = 0, ‘the
complex number reduces to the rcal number a, fpl; Sxdm-

ple, 2. N
Thus, complex numbers include real numbets and imagi-
nary numbers as special cases. For exaf le — 3%, 2

{that is, 2 4+ 02), and 5¢ (that is, 0 4 Sy are a]l compiex
numbers.  As already stated, the firkbrand third of these
arc imaginary, the third is pure imaginary; the second
number, namely 2, is real. &Y

It should be noted that_a 3P bi and @ — bi are called
conjugate complex numbe{s, either being the conjugate of
the other,

By definition, we. 3,\&3 or subtract complex numbers by
adding or subtractmg their real parts and imaginary parts
separately. \f. K )

Examp&(f g

QRSB + (6—4) = (2+6) + (B - Hi=8+1
\”*(’14—5?) — (6 —4i) = (2—6) -+ 5+ 4= —4-+ 8.

By definition, we multiply complex numbers as in the
following example:

Example 2.
(2+@')(1—3?,')-*2—5z—3z
=2 — 5 + 3 (since 12 = —1)
=5— 5.
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Nore. When operating with an imaginary number always use
i rather than +/—1, otherwise incorrect results may be obtained,
especially in multiplication.

To divide one complex number by another, we write the

quotient as a fraction and multiply numerator and denomi-

nator by the conjugate of the denominator A\

Example 3.

244 143 (™
1= 30 143,00
24743282+ T3
T e 149

__:_-1+,‘7.5‘\; ____1__?_@’
TTaes " T

24+0+0—-3)=

EXEREISES V. F
Reduee to the fg.fiﬁcav—l— bi;
L6+ V-9 3.
4. 24+vV-1 0O — 8. % - T
7. *%{\/‘zif. . i1+ v —§ 9. %+"J—%
10. g-.z—,;v;»f-}af. 1. Vo8++v_g 12 V_g- V-

I’erform the indicated operations and mmplﬁ)

1}«(4+3t)+(2+51) 4. (6 — 3i) + (7T + &)
5. (=29 + (3 +3). 16 (64 49 + (=5 + 9.
o 17 (7 — %) + (8 — @), 18, 6 + v—) + (10-+++/~9)-

D7 1. G+ V=2 + @3 +aviy),

20, (7 — 2V=3) + (=1 — 5v-3).

2L G+ V= + G+V=y.

22. (;—\/_E)+{2—~‘\/:—__)

23. (VB+5V=2) + (V5 — 3v—2).

24, (3V5 + 2V—5) +'(2V5 — 5v3).

20. (8 4 7¢) — (3 + 44). 26, (6 — 2) — (9 + 5i).

27, (—11 + V=3) — (2 — 5v/_3),
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I3

28‘
29.

30.
3%

32
33,

35,
37,
38.
39.

40,
41,

417.
49,

81
53,
55,
56,
a7.
58,

59,

(V2 — V—2) — (VB — V3).

@V3 4+ 3V —2) — (—3V2 4 2v-3),

V27 — V2 — (Vo3 — V3,

(5 + 3) — (6~ 40) + (—8 + 7i). _
(4 +3V—=38) — 9 — 5vV—3) — 12 — V—12).
G+V=P+E- V-9~ G+ V-
2— V=2 — (V3—vV_3) — (Vi - V4.
(3 + 204 + 5i). 36. (% — 30)(10 + 70).
(2 + ivB)(T + 645+ 9).

(5 + 37) (6 — 3i).

G — 2V=3)(6 — 5V=5). R

(@V3 + 3V -2)(3V2 — 3V'-3).
(12 + 542 - (12 — 5+/2 - ). N\

. (514 — 36 - {335 — 2415 - 9)... \*
3= aVE(E —ivE). 4 (E - REA
. (a + bi)(a — bi). 46, (a 45002
(14 9% 48, (3+ 203,

1 43N
('——+—-—z) 50 —5-—2—5)-

(4 + 5) + (24 3i). (52 (8 — 7)) + 3+ 50).
(—2 4 30) = (7 5{5& 54. (10 — 7i) + (3.— 8i).
6 — 7+/6 - e)—(\-l'Qx/_  3).

(3 + 2V=5) &8 — 3V—5).

@V + 3x23 1) + BVE — 5v3-9)

(BVT —24/5 1) + @vVT — 9vB - 0.

(o) - (-

602 + ivE) + (VE + ivE).

g}’\(\/_+z\/3)—(l+\/—+z\/2)

62,

64,
66,

UTA

1+ {a+ b). 63. 1 =+ (& - bi).
(@ + bi) + (a — bi). 66. 1 + (@ — b)>.
. . 3—2
Find the value of 422 — 122z + 13z = ) .

Find the value of 422 4 20z -+ 172 = = 2

~5+7v3-i

¢\



CHAPTER VI

Quadratic Equations

45. Quadratic equations. D

7%

A quadratic equation (in one unknownzis :me in which
the highest power of the unknown 0('u”tr}mg is two. The
firsi-degree term and the constant €8fm may or may not
be present. The following are (glﬁaratlc equations:

32 -2 +4 =0, z° +5~—{} 2% 4+ 8¢z =0, 2% =0

46. Selution by chiorlng

Frequently a qug;dra’mc equation can be solved by factor
ing. Q
O

N/

X\
Example. T\
SolvedZ e 5z + 6 = 0,
7. .
'\\SQ}JUTION. In fgctorgd form, the equation is

R\
(x— 2z~ 3)=0.

The produet is zero if and only if one of the factors is zero. There-

fore, all the roots can be found by equating each factor in furn o
zero. Thus,

z—2=0, =2
xr—3 =0, =3

CHECK, 2—-5.24+6=4—10+6=
3—5-3+6=9—15+6=
76
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Example 2.
Solve 3z 422 = 0.

SoLuvTIon. @Bz 4+ 2) = 0.
z =10

oI b2
/

w4+2=0, z=—

O\

~\
The roots are 0 and — 2, as it can be readily verlﬁed that thESe
numbers satis(y the equation.

R
41. Fust-degree term missing. \:\
If the Grst-degree term is missing the equaitipn can easily
be solved. \v
Example 1. .’}:‘ "
Bolve  da? — 3 = 0, NN
Sorvtion, 42 =3; A
5.0
2 _— L o
x : 1\\
.‘a’;‘é:j: S - e i?—, (or & = 8)
.\w 4 2 2

i"\
(The sign @s read “plus or minus.”)
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48, Completing the square.
A quadratic equation can always be solved by completing

the square.
Example.
Solve 9r?— 2 — 4 = 0. Y
Oy
SOLUTION. N
s W
Transpose the constant term: i '\§

2 _ ."s,\‘\’”
3 — 2= 4..\\3

Divide both sides by the coefficient G8%:

"3
RN
$E e S = - .
"::’:,3 3

XN

To complete the squar@ii;f“the left side, add the square of half the

N

~ 2
-coefficient of x, namely, (— %) = % :

(\J .

2 1 1

o 379 9 3
N4
O z
K ()=
s"\,." _ 3 9
»,\ Take the square root of both sides:
Nt
QO 1 V13 1 V13
- =— or r——=——735"
3 3 3 3

1 13 1 VI3

r=3 + 3 or =g =

We usually write
1
pliW¥E 1 VB _12VE

3 3 3 3 3
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49, Solution by formula.
The gquadratic equation

ax* +bx+c=0 (a=0) (1)

is representative of all quadratic equations. For by giving
the proper values to a, b, ¢ we can reproduce any quadratic
equation whaiever. Thus, (1) becomes 32° — 2z — 4 = 0 ¢
fweseta = 3,6 = —2,¢ = —4. We can, however, SOl\{é\
(1) by completing the square, and obtain a formula ‘{)y
which any quadratic cquation may be solved by nere

substitution. ! w\
Transpose ¢: az® + bz = —e. N
N\
. . , b NG
Divide by «: e &’,:

Add to both sides the square of half the coefficient of x

hamely (1 b)2 = (b)z R
Y\2a) T \2e _@

T X"t T 1é T a
O BN b — 4dac
$ o\ — =
\i:\' (x + 2q 4g°
O
Take theéisquare root of both sides:
m\: W
A b =V —dac
Pt o = 2g

b
Subtraet, % from both sides:
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—b + Vb — 4ac 3
or x= 2a
That the two numbers
~b+ Vb — dac —b — Vb —dac .
XK= 20: 3 Xz = 2a ’\(.)

Oy
are roots of the quadratic equation (1) e u bé verified by

actual substitution. N
o

N
EXERCISE \,

s

Verify, by actual substifution, th&t x1 and x», a5 gwen by ()
are roots of (1). ~N

Example 1. "“
Bolve the equation 3?.,:2:;— 2z — 4 = 0.
SoLuTioN. a & 3 = —2, ¢ = —4
Substitute in (2))
B\
—(=2) £ V(=22 —4.3. (=4
NS * =
O 2.3
'S C_2xV4448 2+ V52
N B 8 6
_2x2v13 1+ Vi3
6 3
Example 2.

Solve the equation kx? + 3kx — 2z + 4 = k.
SoLurron. Rearrange the equation in the form

ket + @k — 2y + 4 — k) = 0.
Then a=k b=3—-2 =4k
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Substitute in formula (2):

_3k+ 2+ V(3B — 2)t — dkit — k)
%

—3k 4+ 2+ V13k2 — 28k + 4
2%

EXERCISES VI A

Solve: \\
1, 22 ~ 9z + 14 = 0. 2. x? - bz — 14 =0
3. 22+ 8+ 12=0. 4. 22+ — 1250,
5.22— 6z + 5 = 0. 6. z* + 4z 4\—0
7. 42 — 8y -+ 16 = 0. 8.zz+6z—x6—{)
9. 72— 2z +5=0. 10. 22 — b+ 4 = 0.
1, 22— 10z + 24 = 0. 12. xz’—'~11:c+24=0.
13, 2 — 126¢ 4+ 125 = 0. 148 125t — 126 = 0.
15, #2 — 49 = 0. 15." — 49z = 0.
17. 22 + 49 = 0. M8, 22~ 5 =0.
19. 248 = 0. 5 20, :c(:c+3)=18-
21, #2 — 28z + 96 = Ix\ 99, 2% — Oz — 162 = 0.
23.x~——12:c—|—22=~0 24, 22+ 6x+256=0
25, 12+ 5p 4 PNEA. 9. 2t 4+ 2+ 1=0.
21 6:8*+7x:A3-0 98, 10z — 29z — 21 = 0.

29, 12z2~}\ +6=0  30. 2%+ 10z+9=0.
1

31, 4g2 x4+ 11 =0 32, 922 + 24xr + 25 = 0.
33 25a%'— 20z +1 =0 34, 4z — 192 — 19 = 0.
bt — 2 4 5 = 0. 86, 4522 — bdr — 8 = 0.
01z? — 20z — 10 =0, 88, 322 — 2+ 7 =0
89, 52— 10z +3=0. 40. 56z — 250 — 4 = 0.

41, 1722 — 162 — 3 = 0, 42, 15z2 — 13z + 3 =0.

43, 1197 — g4/5 —1=10. 44 1322 +2/78-2+6=0.
46, 552 — 104/T-x+4=0. 46 922+ 6v2-2+5=10.
47, 37522 — 725z — 350 = 0. 48, Hdx® + 1Tlx + 135 = 0.
g *tl_3z-1 4z —3 b5e+3

‘22 z4+2 B0 o1 a4+ 1
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32— 8 b5r—2 z—1 x—3
. = . b2. =
51 z— 2 z+ 5 x—3+:cm5 4

3. 22— 08z + 02 =0. b4, z? — 017z — .02 =0,

BT.
59.
61.
63.
65.
66.
67.
| 68,
69.
70.
L.

72.

73,

T4/
y-14

Q

NN
.\.

76,
76.
7.
78.

9,

Solve for z:
22— 6x+9=~F 56. 22 — Gz + 9 = kx. A
22— 6z + 0 = kxt = B8, 22 — Bx 4 O = kx? bl

x? — 8zy + 1242 = 0, 60. 1222 — 9zy — 3y2>0.

x? — Bxy + 14y% = 0, 62, x* — oy + 74p=0.
4 day + 102 = 0. 64, 922 — 12xy,<3 41y = 0.
1622 — 34xy — 15y% = 0. ) ‘ :

1622 + 24wy + 9y% = 0. S

x4yt — 9z 4y = 0. ’

2z* — 3y* 4 6x -+ 12y = 0. NG

z? 4 dzy - 6y* — 8z — 125,36 = 0.

-Bolve equations 59-69 fory

The length of a rectangle i85 inches more than its width; its
area is 374 squareincheés. What are its dimensions?

The longer leg of, :zi:’I'fght triangle is 1 inch less than twice
the shorter leg, the hypotenuse is 1 inch greater than twio
the shorter Jég." Find the lengths of. the three sides of the

triangt \‘ )

A ﬂO“{Zr\bed 18 by 30 feet is bordered by agravel walk of
unifgrmt width, The area of the walk is three-fifths of the
arezof the bed. Find the width of the walk.

Aboy has mowed a strip 6 feet wide around the edges of @

'rectangular lawn. The area of the mowed part is 1089

square feet, the area of the unmowed part is 1120 squas®
feet. Find the dimensions of the lawn,

Tind two consecutive numbers whose product is 552.

Find two_consecutive odd numbets whose product is 323-
Find two eonsecutive even numbers whose product is 1088
Find two consecutive numbers the sum of whose squat®
iz 481. :

A grocer paid $180 for some crates of fruit. Four craté
spoiled and had to be thrown away, but he sold the rest
an increase in price of $1 per crate, gaining $44. HO
many crates did he buy? :

L

N
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80, A party of persons chartered a bus for $75. Three persons
withdrew from the party and, as a rvesult, the share of each
of the others was increased by $1.25. How many were in the
original party?

81l. A rectangular pisce of cardboard is 4 inches longer than it
is wide. A 5-inch square is cut from each corner, and the

sides and ends arc turned up to form an open box. The box N\
contains 700 eubic inches. What are the dimensions of the
cardboard? - N\

82. Arectangular piece of tin is twice as long as it is wide, Q
pan having a capacity of 572 cubic inches is made by gutting
a 2-inch square from each corner and bending up\.tbe sides
and ends.  Tind the dimensions of the piece of i

83. A rod which weighs 3 pounds per foot, can be made to balance
al a point 3 feet from one end by attachjng}a weight of 20
pounds to that end. How long is the red?

84, Two airplanes together can map a cettiin area in 12 hours.
One of the planes alone requiresy10 hours more than the
other to map this area. How loig would it take each plane
separately to do the mapping? _

88, A man rowed 6 miles upgtreéﬁn and back (total distance 12
miles) in 4 hours. Higd'ate of rowing in still water is 4 miles
an hour. Find th iizi’oe’ of the current.

86. An airplane flew)s 50 miles at a constant rate. If its speed
had heen 25 miley’ per hour faster the trip would have been
made in 10.rainites less time.  How fast did it fiy?

87. A man stafted out to drive to a town 225 miles away. By
maintaﬁlhig the rate at which he started out he would have
eompleted the trip in & hours. However, after driving

_{tge-fifths of the distance, he had a flat tire, which delayed

. him 45 minutes, He increased his speed 5 miles an hour
for $he remainder of the trip and reached his destination
33 minutes later thar he had planned. At what rate did he
start out? '

88, An airplane flying west at the rate of 200 miles an hour
Passes over an airport at noon. A second plane flying south
at the rate of 250 miles an hour passes over the same airport
24 minutes later. When are they 130 miles apart?

89, An automohile starts from the intersection of two highways



)
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and travels north at the rate of 30 miles an hour. Fow

" minutes later another automobile starts from the same

9. =z

92,
93,
94,
95,
86,
97,
98.
99.
100,

101, *

intersection and travels east at the rate of 43 miles an hour.
How long after the first car scts out will the total distanee
that the cars have travaoled be 40 por cent greater than their
digtance apart?

. A motorcycle messenger left the rear of a motorized troop

8 miles long and rode to the front of the troop, letmnmg it
once to the rear. How far did he ride, if the fadop-travelod
15 miles during this time and each traw{egi St a uniform
rate? "G

In analytie geometry the standard fekn of the equation of
2 circle 13
\.
(. — h)"+ (?J\- Ty =

in which A and k are the coardmates of the center and ris the
radius. . The qua,ntmm % and k may be positive or negative,
but r is rebtrn,tod %o positive values. By completing
aquares, reduce each of the following equations of cireles %

the foregomg\*form and give the coordinates of the center
also the radins:
N

’*-1—?}2'—~6x+4y—3=0.

«\SOLU‘I‘ION 2 —6r+9+y+ayt+a=3+9+4%

O @~ 3+ (y + 2)* = 16.
¢ @=3)+ @+ 2

e

Coordinates of center are (3, —2), radius = v/16 = 4
2Py —dr — Wy ~ 71 =0,
24y 4+ 22 —48 = 0,

2 4+ gy 16 4 14y — 8 = 0,
ey — b4+ 2+ 6 =10,

T +y? —z 43y — 2 =0.
¢4yt — Bx — 8y = 0,
Ayt — 9z 46y - 17 = 0.
2?4 y* 4+ 10x — 2y - 25 = Q.
w4y~ dr + 8y — 44 =0,

+ 4 + 220 -+ 30y — 230 = .
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In analytic geometry one of the standard forms of the
equation of an ellipse with center at the point {(A,%) and
axes parallel to the coordinate axes is

=1

(@~ R, =B
52 + b2

Reduce each of the following equations of ellipses to fhiga, .
gtandard form and give the coordinates of the center and th v

values of @ and b: $

ad
7
)

102, 4z? 4 9y* — Sz + 90y + 193 = 0. M'\k’:
Sorurion. Arrange as follows: N v
4(x® — 2u) + Hy? + 10y) = *\193

Complete the squares within the pal'enth&m and compen~
sate for this by adding the ptoper amounts to the right-
hand side: A

N

4a? — 2 + 1) + 94 + 1{}y+25) ~193 4414925,
dx — 1K+ Bly + 5)° = 36.

Divide both sldes by 36:
PN\ .
x’,\'”: - 1 2 + 2 2
Te-D )

7\ =1,
\/ G 4
R -
.Gg;bi;ainates of center are (1,—2); a= V9=3b=+1
NN

103, 922 4 1642 4 54x + 64y + 1 = 0.

104, 22+ 4y? - 6x — 16y 1+ 9 = Q.

105, 162% 4- 25y + 64z + 50y — 311 = 0.
106, 22 + 3yt — & — 18y + 29 = 0.

107, Ga2 4 23y* + 90z — 150y — 225 = 0.
108, 1622 + 285y* — 160z + 50y — 1175 = 0.
109, 522 - 2742 — 10z + 108y — 22 = 0.
110, 922 + 36y — 6z — 48y — 307 = 0.
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111.
112

. 113,

1622 + 81y2 + 192 + 324y + 864 = 0.
5z + Ty? — 80z — 84y + 537 = 0.

In analytic geometry onc of the standard forms of the

- equation of a hyperbola wiih center at the point (k%) and

axes parsilel to the coordinate axes iy
N
G0 _ =B _ R
- =1, A
a? f2 ¢ \...
O
Reduce each of the following equations of K¥ ﬁerbo]as 1o this
standard form and give the com dlnatm of\the center and the
values of a and b: §

252% — 9y® — 100 + T2y — 269\\; 0.
HoLuTiOn, %r:ra:nge as follow

25(x2 — 435») — Q(y- — 8y) = 269.
Complete the SQumeb within the parentheses and compen
sate for thig, by adding and subtracting the proper amounts
on the r]%@ahand side:

25(? -, ~+4)—9(J — 8y + 16) = 269 + 25-4 — 916

AN/

SO 25~ 2)7 — 9y — 4)* = 225

."\Q.
%wDivide both sides by 225:

&

O’
o\
 §

114,
115,
118.
117,
118.

@=22 (-4

9 95 b

Coordinates of center are (24); = V9 =3, b= Ve

= 5.

4o — Oy ~ Bx — 36y — 68 = 0.
252% — 16y® — 150z — 1928y — 431 = 0.
x*— 36y’ — 2z — T2 — 71 = 0.
9z% — 1449 4 363 + 576y — 1836 = 0.
x? — Qy? — 8y + 90y — 234 =. 0.
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119, z? — o2 — ldz + 10y + 20 = 0.

120, 422 — Oy 4 242 — 36y — 1 = 0.

121, 32% — 49 - 6z + 16y — 37 = 0.

192 1602 — 36% — 48z — 36y — 540 = 0.
123, 4z — 18y - 4z — 108y — 185 = 0,

In integral caleulus it is frequently desirable to
change an expression of the form Vea? + bz + ¢ \
a >0, into the form \/_\/(x — )24+ % or an expres~ )
sion of the form V¢ -+ bz — az?, a > 0, into the f(m:ﬂ
Vavk — {z — k)% Transform each of the follcm"mg’ eX-
pressions into the appropriate one of these forms; € &

124, Vor? — 8z + 14, 126. V522 — 405 K60
126, V322 — 62 L 7. 127. vVi4z? 4+ §0$.+ o1,

128, V52t + 2¢ — 3. 129, V2582 + 1.
130, V7 + 49, 131, V3z2 L — 2.
132, Vg + 2z — 1. 133, {32 + 4o

134, V3 + 6z — 2. 135 V10 + 4z — 227

136. V15 — 10z — ba?, (87, V3 — 2z — 237
138, V1§ i8z — 8, ()" 189, Véz — 2.

140, Vidg — 522, \\ 141, V2 —  — 202
142, \-'1—7:3—3332 - 148. V'3 -} 6z — 42

50, Equahons"m quaclrallc form.

&S ..
An equatien is in quadratic form if it is a quadratic in
some funigtion of the original unknown. Thus,
4 ~\’ 3

\m‘;"' a* + 52® — 36 = 0 is a quadratic in 77,
2t 4 8+v/& — 5 = 0 is a quadratic in V.

Example 1.
Solve at+ 22 — 20 = 0.

SoLvTioN. Factor:
(22 — D2+ 5) = 0.

Q"

L
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Set each factor separately equal to zero, getting

% =4, =2
r* = —35, 2= +V—5= +£iV5

Example 2.

N\
-5 2*+3 A
Solve = —2 AN
- 13 + 5 2 R,
j Y \”/
SoLuron. Let ,\ 3
\:"\.\\’
2 — 5 \g
2 = ¥
43 R7.\d
&
_ 1 Y
Then y+-—= -~2 ™
¥+ 1S v—2y,
¥+ 2y + 1= 0,
s =
m\ ¥= -1, or xq t)=—1.
O 2+ 3
’ \\ 2 =1,
RS, = &1,
.‘\)

‘\70% that, the two fractions in the equation are reciprocals, and

thét.We could equally well have representod the second, instead of
‘&’l}e first, by #.

AN

u

)
\” ~ EXERCISES VL. B
Solve the following equations. If an equation involves

radicals or fractional exponents all answers must be tested bY
substitution into the original equation.

1, 2 —~ 1322 4 36 = 0. 2. 2t~ 1092? | 48 = 0.
3. 182% — 5a? — 48 = [, 4, x4 4212 — 100 =0
5. b4 Tr — 8 =0, 6. 2% — 192 — 216 = 0.

7. 10z — 9Vz +2 =0, 8. 6r — 11Vzx — 35 = 0.
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g, % — 5z3 - 6 =0 10, 8% + 14z — 15 = 0.
11, 2244 — 2 424 = 0, 19, o238 4+ 528 — 36 = (),
13, 48 — 172-8 4 16 = 0. 14, x5 — 428 4 13 = 0,

15 2V —TVE +3=0  16. 9z~12 — 37zt 4 4 = 0.

2z 2 2x
. — — — 2 =10
17 (3:‘-3 — 1) 3dr—1 2

P 2x '
: — —2=0 '
18 Sr— 1 3z —1 Ko
2 'S\
19, ( «--2—) 4 loa
z T NG

% — "‘\’
20, x+6+ fa 3=§_. \
r—23 r+3 2 \
A \J
4+ 5 x+ 2 9 N\l
21 . J* / - 5,
r+2  ONZ T s )

2 o Z..
22'$+4 x 26 -

—_ a

@2—7  22+4 5

23, {z*— 3x -+ 5)2 — 32?4 92:3—?43 =0
2, 2 — 52 — 6 — 5Vt v~<t§x = 0.
25, 22 — ‘\/:cz—2:¢:—l—g§%$4:c+3-

o
26, 3¢ - 10z — 5 &E———
: 255 — 10
e, 8
27. xz 5x —42 —_— e ————
+ \\ zt+ be + 4

28, T};e:éo}called effective area of the cross section of a chimney is

..\gfl)fén by the formula £ = A — 0.6\/2, in which A is the

\actual area. What must be the actual area of a chimney if it
is to have an effective area of 22 square feet?

29. The distance d, in feet, that an object will fall in ¢ seconds is
given by the formula d = Lg¢?, in which g = 32 approxi-
mately. A stone is dropped into the shaft of an abandoned
mine and 6 seconds later the sound of its striking the bottom
of the shaft is heard. Assuming that sound travels 1190 feet
per sceond, caloulate the depth of the shaft.
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51. Equations involving radicals.

An equation involving radicals can sometimes be solved
by the method of the preceding section. Another methad
of solution is illustrated in the following examples.

Example 1.
N\
Solve T+ Vz—6=0. N
¢\
SoLUTION. O
Transpose Vz: T —6=—-Vg, ~‘ R
Square: ' 2t~ 122436 =z, L°

2% — 13z 4 36 = Op
(@ — iz —9) =0

:.'v:‘\——& 9.
The value 4 checks, since

4+ Ve §=4t+2-6=0
The value 9 however ddes not check, since

IPVI_6=913 gm0
N
This is not b®eause we have made an error, but because by squat-
ing both,gides of the equation, we have introdueced an extraneous
root. {Beo section 32.) The value 9 must be discarded a5 8
le root, since it does not satisfy the original cquation

) 5, the only root of the equation is x = 4.
> In dealing with equations tnvolving radicals, all solutions

oblained must be tested, as some may be extraneous. In 1’;111'5
connection it should be recalled that vz, when x is posifive,
means the positive square root of only.

Example 1 can be solved by the method of the preceding sec-
tion, as follows:

z+ Vz—6=0,
(Ve +3)(vVz— 2) = o,
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Since Vz cannot be negative, Vz + 3 cannot be zero; hence
Ve—2=0, Vz=2 z=4
This method is preferable here,

Example 2.

N

Solve Vaz+ 7+~ Va+1—-2=0. O\
NS ¢

Sortrion. Transpose, keeping one radical alone on one Hde
of the equation. (If there is any difference in the ra.dlcals aTWays

isolate the most complicated.) .."\"
V3r+7=2—-vae+1 RN
Square: e+ T7=4— 4V + 1-1-«:5%:1

Collect termos, keeping the radical alone on’ one side:

4vx 4+ a—‘,--2:c -2
Divide by 2: 2via + P —x - 1
Square again: dardd =220+ 1,
—. 20— 3 =0,
(@ —Bi‘(w-r 1) = 0,
z =3, —1

The value 3 dqés"hot satisfy the equation and must be discarded
a5 g root, \}
Example 3.
ShIVe Vr+1+3=0
V +
Discussion. We could proceed as abave, obtaining values for
. This is useless, however, for both {erms are positive, namely,

the positive root of z + 1 and the positive number 3, and it is
mpossible for their sum to equal zero.

Example 4.
 Bolve 627 + 10z + V32 -5z + 1= —
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SoLuTION BY REDUCING TO QUapraTic Fory., Add 2 to both
sides: '

602 + 102+ 2+ V3a2 + 5z + 1 = |,

2B2* + 5z + 1) + V3zi + 52 + 1 = 1.

Let V322 4+ 8z + 1 = ¢ 2ty —1 =0, ~
2y - DBy +1) =0, \

1 ":\'

¥ = 2': ;_}1 K

_
N
g\

A )
V3x% + bz +},\~—:§ or —1,

X
w

Since a positive radieal cannot equal <1, we need only to con-
sider the cquation in which the righ{sﬁﬁe is §. Squaring this, we
gob Y

W\

3x? + 55.13’-&{’1 1= E’

LR Y

120° 520z + 3 = 0,
8 13
N = .. _Z.
) ;\"\\ z 6’ 2
Both of thegg}'a\lu% satisfy the original equation.

A\
£ »

»O EXERCISES V1. €
Y Solve: '
,\\M
WL Ve —5-6=0, 2. V2 +3 —4=0.
3. V3r —15~42=0. 4. V3z 248 =2

5. V22 + 5 —~ 6z = 5. 6. Ve —5+2Vy —3=10
T.V2e+5—-vVs—6=3

8 2V2r+1—~ V3 4 4=9

9 2Ve — 9~V < 16 = v,

10. V5z + 24 Vz 4 2 = 2v/3.

. V2 + 1~ Viz -5+ vz =8 — 0.

— 5
12, V22 -3 —4=-—— .
V2 — 3
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g V2L, 3,
3 Vaz + 1
14, Vo' — 10z + 84 + Va? + 10x + 34 = 4Vi0.
\/m—k\f?—x_

16. =3
V24— V2 -2
I, 24+ Ve+3 3+Vz+2
"2—Ve+3 3-Vz42 L™

17, Var 4 9z — 2V + 22 ~ 6 —z =0,

B.Vi-1+vVat3—2=0. 7,

19, V320 — 11 + 2Vz = 0, O

20, Onc leg of a right triangle is 24 inches. If the'other leg were

lengthened by 25 inches the bypotenuse would be fengthened

by 15 inches.  Find the length of the hypetenuse.

Two straight wires are attached at & point 24 feet above the

base of a vertical flagpole standing on level ground. One

wire Is 1 foot longer than the other and reaches the ground at

a point 3 feet farther from tligtbase. Find the length of each.

92. The radius of the base d@leach of two right circular cones is
Rinches. The altitudeof the taller cone is 9 inches more than
that of the shorteiGone, and its slant height is 7 nches more
than that of theshorter cone. Find the altitude of each.

23. A lighthouse 4s' located 5 miles out from a straight coast.
The lighthpbse keeper has a boat which can travel at the rate
of 10.odiles’ an hour. At some distance along the coast is a
port{ \H he goes by boat directly to this port it fakes him
1}3]’;“3-11 hour longer than if he goes by boat to the nearest

~point on the coast and then proceeds by automobile, at the
‘rate of 40 miles an hour, to the port. How far is it from the
lighthouse to the port? :

2

32. Character of the roots.

It will be recalled that the two roots of the guadratie
equation ax® + br + ¢ = 0 are

=—b—i—\/b2—4ac x.___b._bb2—4ac. (1)

& : , =
2a 2(]-
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The expression
b* — dac,

appearing under the radical sign, is called the discriminant
of the equation az® + bz + ¢ = 0. .

If ¢, b, ¢ are real numbers, then the discriminantigives us
the following information regarding the chardctér of the
ToOis: N
N\

Weal and unegudl.
{ real and equal. -

smaginary.

+
If b — dac is { 0 } the roots are)
. - x\

if a, b, ¢ are rational,* thg’foc;fs are rational when 5 — 4ac
15 a perfect square (incdliding zero); otherwise they are
irrational. N\

If the roots aredmaginary, they are of the form p + @
and p — ¢7, that{s, they are conjugate imaginary quantities.

Two equa-} radts are often called a double root.

.T],ie Pmi?ﬂ% tabulated on page 95 illustrate the use of the dis
cmmm{a}at W determining, without solving the quadratic equa-
tionjythe character of its roots. The final column s unnecessary,

. bu 18 included here for purposes of verification.

If the constant term in 2 quadratic equation is missing
one root of the equation is zero. Thus, the equation
22* — 3z = 0 has one root 0. (The other root is 3/2.)

If both the constant term and the first-degree term are
missing, both roots of the quadratic equation are zero; this
is, of course, a trivial equation. Thus, the roots of 22 =0
are 0 and 0,

* Bec p. 39, footnote.
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95
Equation leszcr_ fac t Roots are -Va:::tssof
real and unequal
322 —dr — 7 =0/(—4)* ~4-3-(—T){(also rational, 7 3
=16 4 84 = 100[ since 100 is & | 3’
perlect sguare)
2 42 + 5 =022 —4-2.5 imaginary | —% + %
ima; z T £
o4 40 = —36] T OENET -1 -4
real and equal | _\ o
422 4+ 123 4 9 = 0)(12)2 —4-4-9 (also ratiomal, .53 —%
I = 144 — 144 = 0| of course) '\\

1f the first-degree term-is missing, but thQ constant term
is present, the roots are numerically eql{al but of opposite

sign.

Thus, the roots of 227 — 3 = (lare 2z =v3/2 and

2 = —V/'3/2; the roots of 2? +4 0 are z = 2¢ and

= —-2i,

LAY
e
N

EngGSEs VL D

Determine the c‘h%a‘acter of the roots of the following equa-
tions without sél¥ing:

1 2% — 4z — P8 0,

2 221122436 = 0.

8. 2 + 2z L29°= 0.
2 2x‘*+\§x-—4=0

4, 22+ 3x+1=0.
6, 2074 br + 6 = 0.

7. 4% =
9. 443~ 49 = 0,
{;gz’z + 49 = (.
137 522 = dex 4 3,

16. 837> — 15522

Sr 4+ 49 =0

8 202+ by 43 =

10, 4z — 492 = 0.
12. 422 4 49z + 4 = 0. N
14, 222 = 5z — 2.

16. 177622 + 1839z + 1896 = 0.

+ 2814 = 0.

i
/

i

f.

Determine the values of & that will make the roots of the
following equations equal:

1. 24 kx4 & = 0.
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SoLvTioN. b2 — dac = I? — 4k = 0,
k=04

If k = O the equation reduces to 22 = 0, which has both
roots zero. If k = 4 the equation reduces to z2 4+ 4z +4

= 0, both of whose rootsarez = —2. N
18. k»* +2: - 3 =0, 19 222 — 32+ 2=k
20, 92 4+ 9z 4+ 4 = kx. 21. x~—51:—f—1——ka:"\\
22. w4 1)% — (k + D% = Q. O
23, 2(z + k) = kiz + 2).
U 22+ B+ ket 624 12=0.

26.
2?.

28.
30,
32.
33.
34,

36,

s 2?4 kP — dky — 162 4 16k — 8 =00

(g—1)x—2) — (z—l)(k—?)+(x~2)(k+1)=0
& + 4k? + 62 — dky = 12k — 9N

N\
Determine % in each of the following equations so thab
one root of the equation will be'zero:

SveeesTioN.  Set the edndtant term equal to zero.
2%~ 35+ 2= L8V 20 (x4 1) — (b 27 =0
2z + k) = b(meR3)., 3L 9z 4 Op + 4 = k.
x2+k2+6@& D —5&+k = 0.
- DESY = z-DE-2) + (x — 2k — 1) =&
(be —3PF 3@ —3) — (b — 3)? =

EF hr — 6z + 12 = 0.

De"termme % so that the roots of the following cquations

\wﬂl be numerically equal but of oppoesite sign:

536'
A

38.
39,
40.

41,

a2, 2

2%+ 4k — dkx + 32 — 4k 4+ 5 = 0,
(x—‘l)(x-—2)—-(x—l)(?u-2)+(x—2)(k—1)—'0
(ke — 3)* 4+ 3(zx — 3)* — (b — 3)2 = 0

Bz~ 2)? = [(k — 2@ — 2.

2(x + &) = Kz + 2)

f_c_fc_'z_l_i%a: kx 38

Deterrmne the character of the roots of the following -
equations. Note that some of the coefficients are irration
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numbers and that it cannot be concluded that the roots are
rational if b2 — 4ac is a perfeet square.

43, 32—1;5:1:4-_\/?::0. 4“2+ V5.2 +V3=0
45, 2¢2—2V10 2+ 5=0. 46, 322+ 3V3.2 4+ V5= 0.
AL T4+ 3VEr+2=0. 48 T —2V2.2+3=0. .

N ¢

53. Sem and product of the roots. "\..\

If we write r for the radical V'¥* — 4ac, then equatlons ( 1)
of seetion 52 reduce to

'”‘:\’\‘
—b+r —b —\Y
X = 20 f In = "—-—2—§:v A
\\
Then, A :w'

oz __—b—l—r+'-:fjf"—~.-r 2 _ b
! 2 2 . N 2g T 2 a’
g -~r2$§;2—-(bz—4ac) dac ¢
e 4(12 ’\\_v" 4a? T4 o’

That is, m tke gua,dmtw equation ax® + bx + ¢ =0, the
sum of f{”’mots s — Z—')e:.f:n,d the product of the rools s e,
o a

It g, perhaps SImpIer to divide the equation through by
the ‘edefﬁelcnt of 2°, reducing it to the form 2 + px + ¢
\2 )0. Then we can state that in ihe quadratic equaiion
¥+ pr 4+ g = 0, the sum of the roots ts —p and the product

of the roots s g.

Example.

Find the sum and the product of the Toots of the equation

3z —dx — 7T = 0.
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SorvTion. Divide by 3:

4 7
[ J—— —— =
x 3 x 3 0
4 4
Sum of roots = — (— 5) =3¢ A
7 A\
Product of roots = — 3- (\)

e
These results can eas‘ﬂy be checked in the presmik e;xample b)’

solving. The roots are I and —1. \\

54. Formation of an equation with iven roofs.

If z and w, are the roots of a ddadratic equation, then
the equation can be written (x wxxl) (x — x2) = 0.

ol

Example 1. P\
Find an equation whoaé re)ots are 2 and —3.
SBoLuvrion. Methoc(l #—2(x+3 =0,

HEtr—6=0.
Method 2. \\
Sumofmots-2—3— =l=—pp=1.
Product of }'o'ots =2(—3) = —6 =gq.

A\ dt+prtg=zt4+r—6=0.

N/

"{\Exampie 2,

w\. ) Find an equation whose roots are 3,3—-—

N
Borurion, : ( - g)(x -+ )

Multiply by 3 - 2 to clear of fractions:

e )0

Bz - 22+ 1) = 0,
682 —z — 2 =0,



1551 FACTORING BY SOLVING A QUADRATIC 99 .

Example 3. _
Find an equation whose roots are 2, —3, 7,

SoLTTION. (x— 2¥z+ 3)(x — 7) =10,
I® — 63% — 13z - 42 = 0.

N
Note that this ig not a quadratic equation.
:"\t\'
Example 4. O
Tind an equation whose roots are z, and 2. N
SOLUTION. (@ — x)(® — a9} = 0, '\‘“
— (@1 + a)x + 2w = 0. N\
A

Compare thig result with section 53, R

55. Factoring by solving @ quadrcﬂ{c“

A quadralic expression with wational coefficients can be
factowd info rofional )"actors zf “and only if its diseriminant
18 @ perfect square, N

S

Q
~\
E le. ¢ \J
xample \\ .
Factor A 3zt —dx— T,

SoLuTroN. bﬁ\-}-'4ac = 100. Solve the equation

§\\"' 3% — 45 — 7 = 0.
RS 4+ V16 +84 410

."\" = 6 6

N .. .
“Ibe factors of the original expression are

3(:c—§)(:c+1), or 3z~ TN+ 1).

7
=g, L

In general, the factors of aa? 4 bz 4- ¢ are
alz — z) (@ — 22,

where «; and x, are given by (1) of section 52,
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12.

13.

14,
16.

16§:ag

ad

- Rt~ K — 2200 — 1) + k(x — 1) — k = 0,

EXERCISES VI E

Find, without solving, the sum and the product of the roofs
of the following equations:

2?4+ 52+3=0, 2,32 — Tz +4 =0

4 — 22 ~ 1 = 0, 4, 522+ 6x -7 =0, )
8 — Ox — 622 = 0, 6. 822 4 3z = 4, N
(3z + 2)2 = 4. 8. 2557 — 6 = 0, O\
2522 — 6z = 0, 0, 32+ iz + 1 = O\ "

N

Determine the value of  in the follow'iﬁgiéquat-ions:
2® -+ kz + 18 = 0, given that one roobis twice the other.
O

- Sotvrion. Letr = one root; ’t:hén 2r is the other.

rt2r=—k) (= ~p,
re2r =18 | 88 =9 = a3
. : A3 = F9,
2 + kx + B = ()'given that one root is 4.
SUGEESTION , fOR ALTERNATIVE MeTHOD 0F SOLUTION.

Sinee 4 is 2200t it may be substituted for x and the resulting
equationy Solved for k.

A%/
39:2,{5— kx + k + 6 = 0, given that one root is 5.
Ba¥~ Tx — k = 0, given that one root js —2

— kx - 24 = 0, given that the difference between the
roots is 11,

(N1, 622 — 172 -k = 0, given that the difference between the

N
\¥
\:

18,
19‘
20,
21,

22,

roots is 1.

2"+ kz + 1 = 0, given that one root is 4 times the other.
32 + 8z + k = 0, given that one root is 3 times the other. .
4z* + kr — 7 = 0, given that the quotient of the roots 18
—2 _

ax% + b + & = 0, given that one root is the reciprocal of the
other.

Let r and s be the roots of the equation az? 4 bz + ¢ = -
Find a quadratic equation whose roots are r/s and ¢/r.
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Find quadratic equations whose roots are

93. 5, 7. 24,

26. —8, 0. 27, &

29, -+/3. 30.

32, 1 - /3. 33.

35. 2 £ i+/3. 36.
S

38, 5 £ 3 /3. 39.

41, /2 + /3. 42.
44, 5 —1, 6. 45, :

EXERCISES VI F

—3, 6. 25, 4, 4.
-3 28, 25,
3L =iv/3,
—3 =+ 7. 34, 2 4 3,
17 4 34/2). 87 (5 £iv3). N
VR g 2 VB
5 - T3 0y
V2 % 3i. 43, V2 £ iv3. (O
—1 -3 46. 5, £4. N\
o\

Factor the following expressions by ﬁ\r§ solving the corre-

spolkling equations:

1. 242% — 1490z — 625.

3. 64z — 66z — 49,

2, 81;:;2 - 15152 +- 56.
4 .;S;w -+ 219z + 200.

™
‘v

¥ind the frrational QKthe imaginary factors of the follow-

ing expressions:

b. z? — 2 — 1, \

SOLUTI;{N;;\ ‘Set 27 — 20 — 1 = 0 and solve, getting

T,
N

.\ Phe factors are

\ 3

)Y
. \\\ @ =143,

m=1— 2

[z — 1+ V2t — 1 —2)], or
(@ —1— 2@ — 1+ 2.

8. 22 L 25,

8 22 — 122 + 24.
10. 422 — 202 + 34.
12, 422 — 240 + 41,

W22~ 25 2+ 14

7. x* -+ 5.
9, 2%+ Gz + 13.
11, 822 — 4z — 1.

13, 22 — 242 -2 — 1.
15, x% — 2+/5-2 - 8.
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56. Graphic representation of a quadratic function.

If we have a quadratic function such as 2> — 22~ 3, we

y=x2—2x—3

X

y

11
[ VR = R

5
0
-3
—4
-3
0
5

can set y = 2? — 2z — 3, {ind values of g
corresponding to assigned values of 2 (see
aceompanying table), and plot. The graph -
of this function is shown in Fig. 9. [The
curve is called a parabola. (The graph of
any quadratic function is a 'p&rﬁbola.)
The points at which the curvelcrosses the
z-axis, namely, 7 = —1 and\= 3, are the
real zeros of the quadraticdfunction, or the

real roots of the corresponding equationye? — 2z — 3 =0
The graph of the function y = 22’5 2z + 1 is shownin
Fig. 10. The equation found by Q’et\ting the function equal
to zero has equal roots (i.e., A ‘dbuble root) & = 1, and _it
will be observed that the cq;'vkrmerely touches the r-axis at

the point = 1.

~

™

v

) " ¥ Y11
A u
7 i / N
\ { I L
X "
\ i ]
\ B
X 0 X x 5 X

Y
\
X o -
\L 7/
[
,\UY’

\ 4

Y’ id

N\
o\ Fia. 9. Graph of quad- 1 : b ol quad-
~ ratie functicn z® *2% -3, Fre.10.Graph of quad: Fig.11.Grapheld

raticfunctionz?-2g4-1. ratic functiona® 2542

p "\f ./ Roois of corresponding Roots of corresponding  Roots of corresponding

equation real and yp-

c¢qual.

equation real and equal. equation imaginary-

Fig. 11 shows the graph of y = 2% — 2z + 2. The cor
responding equation has imaginary roots & = 1 = 4, and
the curve does not meet the z-axis. '

In general, the graph of a guadratic function crosses the
a~awis in two distinet points if the roots of the equation b
tatned by seiting the function equal to zero are real and
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unequal, touches the z-axts if they are real and equal, and does
not meet the x-axis af all if they are imaginary.

57. Maximum or minimum value of a quadratic function.

The lowest point on the curve representing the quadratic
function corresponds to the minimum, or least, value of the
function. If the curve is inverted from the positions shown
in Figs. 9, 10, 11, as will be the ease if the coefficient of TN
is negative, the hlghest point on the curve corresponds- i;o
the maximum, or greatest, value of the function. VA
method of finding the maximum or minimum vale of a
quadratlc function by completing the square is. rllustra,ted
in the examples below.

Example 1. ’ \\

a\
Find the minimum valye of 322 — 2z +’4-‘

Sorvrion.  y =3 (;t:2 — gx) —i—~4 3
_ 1
=3(x2—--—5‘:+—)+4—-

3
(S et

The term 3(x — )213 “always positive or zero; consequently ¥ can
never be less th%n It is equal to this minimum. value of 4t
when z = %

Exampk?
Em& the maximum value of —5z% — 42 + 7.

“SoLurion. y= —ba>— 4z -+ 7
= —5(x2+§x) +7
4

e — 2 - _— 4- =

2y 39
= -5(&7*!-"5') +"5_'

QY
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The term —5(x + 2)® is always negative or zero, and the maxi.

mum value of  is 32; ¥ is equal o &* when z = —2.

EXERCISES V1. G

Draw the graphs of the following funections:

1 »*— 4, 2,0 — x N\
3. x? — 4x. 4. 22 4 4x. A
b. 4o — 2% 6, 12— x4 1. .,\"‘:\
7. 322+ 1. 8. x22—dx-+4 N
9. 2* — z — 6, 10, 22 — 5z + 6
11, 2% — 3z — 6. 12. 12 4 6z < &

Find the maximum or the mininiin¥ value of each of the
following functions, and the corrpsponding value of . Btate
whether maximum or minimuxd,

13, 22 — 4z } 4. Mz — 7z 4 10,

15, 2 + 5z — 3. W28, 5 — 4z — 2%

17. 8 — 2z — 22, N8, 8 — 2z + 22

19. 222 — 6z — 3. &N 20, 32+ 2z — 6.

21, 4z — 22, O\ 22. 4z + 27

23, 2t —z + 1\ 24, 3 — 5z — 222

26. 1x® + z 49~ 26. 3a? — 3z — L.

27 37° — P+ & 28, jo* 1+ dx + §.

29, 2 3.z 4 L. 30. V2.z2 — V3.2 +6.

31, ¥ind two numbers whose sum is 18 and whose product 82

Nnaximun,

R é} A stone wall of indefinite length is available for one side of 3

rectangular enclosure, which is to be fenced in on the other
three sides. Find the maximum area that can be enclosed by
100 yards of fence.
33. Prove that the rectangle having a maximum area with a fixed
perimeter is a square.
34. A motion picture theater, which had a daily average of 1800
* paid admissions, increased the admission price from 50 cent
t0 55 cents. This resubied in a decrease of 100 in the daily
average of paid admissions, Assuming that for each 5—061_1t
inerease in price the number of daily paid admissions ¥
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35.

36,

37.

decreage 100, find the price which will afford maximum
reccipts.

A merchant can sell 500 articles per day at 5 price of 60 cents
apiece. He ean soll 10 articles less per day for each penny
that he adds to the price. I he pays 50 cents apiece whole-
sale for the articles, what refail price will give him. the great-
est profit?

If an ob]ect is thrown into the air with a velocity v, its dis;
tance d, in feet, sbove the point from which it was thrown,\

at the end of ¢ seconds, is given by the formula i O

d = vl — %gtz: ,...( ".‘:

in whieh ¢ = 32 approximately. Find the greafbe\ét height
reached by an object thrown vertically intd\the air with a
velocity of {(a) 60 feet per second, (b) 64 \feet per second,
(c) 100 feet per second, (d) 128 feet pef\gecond, (e) 320 feet
per second. Pa\4

A man wishes to fenee in a rcctangula.r plot of ground, one
side of which lies along the dwle{lng line of his property. He
has $300 to spend for the fenee) which costs $1 per foot. Heis
to pay for the three sides of ‘the enclosure which are entirely
on his own land a.ndqur half of that part which is on the
dividing Yine, V\Q@r Js the maximurm area thabt he can
enclose?

N\



CHAPTER VII

Systems of Equations
|nvo|ving Quadratics

RS
58. Quadratic equations in two unknowns. O

The degree of a term in two or more varigbles is the sum
of the exponents of all the variables. (Ttd§inderstood that
these exponents are positive whole numibers.) Thus, 42%
is of degree 5, —2x%y%* is of degree 11, 27y is of degree 3.
(See sections 14 and 18.) ‘O

The degree of an expressionygrdquation is that of the term
or terms of highest degree occurring in it.

A quadratic equation is“an equation of second degres.

For the case of twouinknowns, # and y, the only terms
of the second degree are of the type aa?, by, cy?, and ﬂ}e
most general quadratic equation of the second degree it
z and y is \\

G + ey + e + dz + ey + f =0, W

term’?i;‘}f" first, degree and a constant term (degree zero)
being allowable.

3 "When we have two simultaneous equations such as (1)
(O with all terms present, the solution would be estremely

difficult; for certain special cases, however, to be col
sidered in this chapter, the solition can always be effected.

59. One equation linear, one quadratic.

When we have two equations in two unknowns, one of
the equations being kinear and the other quadratic, the
solution can be accomplished by substituting from the
linear equation into the quadratic.

106
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Example.
Solve:
d3x — 2y =5,
22—y + 2y =17,
Sovurion. From the first equation, Q]
3t — 5 ’}
y = » .”\\
P4 % \/
RO
Substitute in the second equation: i &:,\
S
322 — N
xz_u_,_‘gx__g,_zg\
2 SO

9227 — 3a% + 5z + 6z —ilqu 14,
2 — 11z 4 24 = 0,
“‘:z\ xr = 3 8

N\
Y

’ 4
s"

\

Substituting these values 1 1n theiznear equation, we find

S%}_B Z_IE.
Y5 =23
\)

The answers maistbe paired as follows:
7,

O .19
\§ @=3y=2), (x—S,y 2)

s‘

é‘:ﬁh’pmrs of values satisfy both equations.

EXERCISES YI.. A

Solve for x and ¥:

1.$2+y2=25, 2.x2+y2-100=0,
T+ ¢ = 25, - x4+ 3y+10=0,
3z = 3y, ’ 4, y* = 2z,

z—.3y_ y=2x'_12l
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CBoxt oyt =4, 8. 2? — gy =4
z4y=4 T—y =4
7. 2z — 3y = 6, 8.z+y—1=9,
zy = 12, ' 32 — y? — 23 =1,
9. 224 y* — 62 — 160 = 0,
z+y+4=0 N\
10, 22 + 32 ~"dz 4 2y — 20 = {, )
z-— Ty + 16 = 0. R\,
11 a® + ¢ — 4z — By = 2, O
2z —y=1 N
12, zy + 24 = @, o\'{j
2r—y—12=0. O
13, 2* — 4y = 0, 14, y2—4€‘= 4,
34 2y—-1=0. de H¥HY — 10 =0,
16. 328 — Zzy + o — 4y = 16, N
2e—-3y+1=0.
16, 5xy+7y-—~3x+2y—|—2’—0
3z — 4y — 14 = (. ,'.3;
17, 16m2+9y—32x+86y—92—0
4x 4 3y — 10 = O»
18, 922 + 16y* + 1853 32y — 119 = O,
3z — 2y — 5500,
1. 2+ 20y A3+ Ba+y—6=0,

x—y—l;3—{}
$2 y2 -
0— "o L= =1,
az»j_bz L, 21 a2 h?
Ty
.‘\______=1. __0
Na b +

md {22, Find two numbers whose sum 1s 39 a,nd whose product is 374-
\ ’ 23. The sum of two numbers is 26, the sum of their squares B
' 346. What are the numbers?

24. The hypotenuse of a right triangle is 17 inches, the difference
of its two legs is 7. Find its ares.

26. The perimeter of a rectangle is 98 feet, its diagonal is 41 feet.
Find its dimensions.

26. The difference between the squares of the digits of & two-
digit number is 45. I the digits ave reversed and the result-
ing number subtracted from the original number the differ
enceisalso 45, What is the orizinal number?
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60. Equations linear in the squares of the unknowns.

When the unknowns oceur only as squares, simultaneous
quadratic equations can be solved by the methods used in
solving simuitancous linear equations,

Exampie.
Solve the simultaneous equations r:\:
d2? 4 By? = 127, " (1)
Brt — 4y? = 89, 3 @)
w\¥
SoLurion. The operations employed in effecting ‘the solution
are indicated at the left, PN
4+ (1) 1622 + 12y = 5080\ (3)
3.(2) 152 = 12y2 = 267" @
3) 4+ @) : 3x? —’735 (5)
(5) + 31 x”’: 25, (6)
“~$ = +5,
{1 3yt = 127 da? = 127 — 100 = 27,
m\ ¥ = +3.
\‘ l

The results should’be paired as follows:

($ ""é!"y = ‘3): ($ = 5! ¥ = “_3)1
Kk‘-«),y—S), (= —5y=—3).

All four p\za.lrs of values satisfly hoth equations.

AN
"‘\' W 4
N/ EXERCISES VIL B
Bolve for # and y:

1. $2+y2=25’ 9, x2+y2=4l,

2t — gy = 7, . 222 4 3yt = 98.
3 222 4 3y = 6, 4. 32% — 5y* = 5,

3x2 — 5y = 47, 42 — Ty = 8.
5 21:2—3’y -—7 6. 2$2_5y2=30)

32 — 4y? == 12 32?2 — By = B3,

)¢
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7. 22§ y*> = 25, 8. 32 4+ By? = 4,
0z 4 25y = 995, dx? 4 4y% = 3.
9, 42— 11y =7, 10, 9% -F 16y° = 144,
—3x 4+ 8y = —4. 4r? — 16y* = 64.
11, 322 + 2y = 28, 12, 44x® — Hy? = 0,
422 — Qy? = (. 14x% — 5y* = —833. ~
13, The medians to the two legs of a right triangle are 20‘an(’1 25
respectively. Find the two legs. )

O
61. All terms involving the unknowns of second degree.*

If all terms involving ¢ and y arc of jr(h;é'se(:ond degree
we proceed as in the following examplesy

~\J
{2
Example. A&
Solve: >
22 + by — 10y* = 8, m
ahs 2xy + 3yt = 3. @

Sovurron. Methédd. Multiply (1) by 3 and (2) by 8,s0ast0
malke the const@térm the same:
A 63 + 15zy — 30y = 24, &)
JOF 8at - l6ay 424yt = 20 @

Sl]zb}r;ct {(3) from (4):

O 2* — oy + 5dy? = 0. ®
Y . -
Solve for x in terms of 4. This can be done here by factoring.
(= — 2) (22 ~ 27) = O, ®
r=2y, z= % Y. @

* Note that simultaneous quadratics of the type considered in the P
ceding section (viz., linear in the squares of the unknowns) are also of
type. '
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Substituting x = 2y in (2), we get

3y =3, y= %l )
5= 2% = 49, ©)

27 . .
Substitute z = rY y in (2) and solve for y, getting

_ 2 x\'\t
LRV T O
I WO
x BT — = Tre— . P »
2 211 \,"\\\‘
* \}
The values must be paired as follows: ) x:\\:
(x=2;y= l)v (x= _2}’y~=}_1)!
(1: 27 2 ) ( 27 2 )
= Y= P A |
vaii ! T Vail)’ SN Ve Va1l

~
AN
.3

The vulues containing radlcals:hl the denominator can be ration-
alized if desired, e.g., \\

27 2Van 2 2vall
WV 21.11?' 21 Ve 21l

Method z\\\Let y = tein (1):

"\,“
8 222 + Bl — 10822 = 8§,
Q s
s — (10)
2 4 8t — 1042
Lety = tz in (2):

22 — 2ix? + 3% = 3,

3
a9 11
e Do s ()
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Equate the right-hand members of (10) and (11):

8 3 3
2+ 50— 1082 1 — 2t 4 32’
8 — 16t 4 2442 = 6 + 15t — 304,
542 — 31t 4+ 2 = 0,
1 2 N
T2t o7’

¢
Oy
1 . :..\:\ 4

Bubstitute! = éin (11). (We could use (10} just as well.)
. &N\

2 O
Substitute { = —in (11): i
ubstitute 27111( } \

2 = o3 =
T . 27{ T =+
Q
" 4 = = — = = -
YT 5T = A0

2 2

“The va.l}tgé:’ﬁiﬁst be paired as before,
The-difcerning student will note that methods 1 and 2 are

Ek‘»itﬂif'gihﬂy the same.
O
SO EXERCISES VI, €
L)
}”' Solve for z and y:

L 2® 4 y® = 25, 2, x4+ 2y = 5,
ay = 12. zy + 3y = 2.

3. %24 ay = 32, 4 x2—xy — 98 =0,
zy + y? = 32. zy — y* + 98 =0

5. 224y~ 3y +9=10, 6.2+ 3zy -+ 2® =3,
-yt —2T =0, 22— 3xy —y? =3

Let—ayty=09, 8, 2 — Oy = 18,

3a% -+ dzy = 33, 3z% — dzxy = —3.
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9, Say - By = —2, 10. 2% — zy — 4% = 2,
2% — 3y = —10. 3z 4 3xy + 292 = 8,

11, 722 — Sxy + 9y = 47, 12, 32? — dxy + 3y* = 42,
4z? — 3y + Syt = 27, 72— gyt = —16.

13, 7z% + 6xy + 6y = 63, 14, 4z® - Toy 4+ By = 140,
4z® — 3zy + 2y* = 81, T2 -+ 3zy + 3y = 52,

15, The area of a rectangle is 168 square inches, its diagonal is 25
inches. What are its dimensions?

16. The area of a right triangle is 120 square inches, The‘\ \ )

median to one of its sides is 17 inches. Find its two mdess“

-
&N
< 3

62, Symmetric equations.
An equation is symmetric in two unknowns 1f"t?he equa-
tion is unaltered when the two unknOW{lg are inter-

changed; * for example, \\.\

3x2—2xy+3-y2+x+y:%:“7x=

Simultaneous quadratic equatlotj'svboth of which are sym-
mefric can be solved by repla(‘mg one unknown by u - »,

the other by u — ». £
x}
Example. \\w
Holve: _ “
Sx?\ 23:y+.3y + 2 +4+y— 50 =0, (1)
N orr o — 3z — 3y — 29 = 0. (2)
:\\
SOLLnéN. letz=u4v,y=u—1n
\ (~1) 442 4 8y 4 Qu — 50 = 0, (3)
(3) ou® 4 407 + u — 25 = 0. )
From (2), 4y? 4+ 4p? — Gu — 20 = 0. (5)

* Kote that some symmetric simuitaneous quadratics may also be other-
wise elassified. Thus, the equations

2t 4yt =25, zy =12

are of the type considered in the previous section and can be solved by ‘the
methods of that section or by the methods of the present scetion,

N
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{(5) — 4) 20— Tu—4 =10 (6)

Substitute © = 4 in (4):
4P = —2uF — 4+ 25 = —11,
v =z % V11 L\

‘,.\'\ v
Y
N/

!

% \
x=u+v=4i§\/11, N

y=u—v=4=l=%\/j;‘_jf.}\
. K7
Bubstitute v = — 2 in {4): \
4pt = 25, ,s}:‘é’.; =% ‘5-
“?:;“ 2
1, 8 1 5
3_’,:------4\--!——:21I y:-—-———~=—~3
(O ? 2 2
N1 5 __ .5y
B TemeT A y=—gfgTd
<&
The ahgwers must be paired as follows:
E”\.s.
N i i
’:.,\ (x=4+§\‘11) 934“—5\/11):

(e-4-ivAa y=2+iva),

(z=2y=-3), (@& =-3y=2).

It will be noted that the solutions are symmetrie, as is nece
sarily the case.

It will be helpful to note that in symmetric qu&dfﬂj’_ic
equations the unknowns can always be grouped into the
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forms =% 4+ %%, xy, ¥ + y, and that for the substitution
£ =u-v 1y =u—uv wehave :

2y =200+ 207 ay=u—, z4y=2u

EXERCISES VN, D

Bolve for  and y: . A o
2\
1‘ a;z—zy—i—yg.—_ 19, 2. 2x2+2y2_5x_5y=5,:'\ K
2y +6=0. a?+yt+ 242 =7
8, 22+ y® — 3z — 3y = 14, A\ )
ay -+ 4z -+ 4y = 56, R4

b -Bay+yttaty=12,
_ xy — 4o — 4y = —20. RS
B, 8zt — ey +3y2+4c+4y—49=0, e
24 Try -+ ¢yt — 2 — 2y 4 31 = QN
6.4:62—23'y+4y—3;v—3y-16—'0
222 — dzy + 2% + 3z + 3y — 230,
T2 — 3zy + ¢ +x+y——11’-—0
322 + zy + 3y? — 2z —~ 2y =13 = 0.
8.2x2—i—3xy+2y-—5x—»5y—|—1w-0
2xy+y2—i—4:z:+"‘4\y+20—
9.(x+J)2—2(:c——?}§(*y—-m)—4{x+y)—71—0
ay —2) +ya O +3x+y +4=0
10, 3¢z + )2 + 20— )2 — 4z + ) — 260 =0,
2z — )2 3z +y) — 42y + 70 =0.
11, The ared of ‘a right triangle is 210 square inches, its hypote-
nuse, 1:‘\3 inches. Find its two sides.

63 Dusceilaneous methods and types.

Ometimes special methods are shorter than those given
above.

Example 1.
Solve:

24yt = 25, W
xy =12, @)
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Sorurton. These equations are symmetrie, and they alo
come under the ease in which all terms involving the unknowns
are of second degree. They can thercfore be solved as either of
these cases. Towever, the following methaod is perhaps neater:

From (2}, 20y = 24. (3)
O+ 3) x4 2zy + y* = 49, z+y =47 NG
NH—-@® 22—2xy+y2=1, r—y= %L O\ {5)

z2+y=7 =xt+y=7T, zdy=—T <z -T

g-y=1; z—y=-1; z—y=1; ,,;i;.‘—y=—1;

(r=4, y=3), (x=3, y=4), @=—3, y=—Dr=—4, y=-3)
-\

Example 2,
Solve: .*'.\\"
¢ ,\"
2+ g= 35,

x»} Y = 5
Note that one equatio‘r;"is a cublc, the other linear.
SoLUTION. Di@e the first equation by the second:
\\M 22—y +yt =T

Substltute :g — 5 — 2 in this last equation and reduce the result:

> 2 +6=0
W x? — 3z = 0,
\\\ x=23
A\ y =32
”\\ =2y=3), (=3 y=2).
\ 3
Exampfe 3.
Solve:_
B2 — Toy + 2% = O, (?J
Yy = Tt — 4_ ( )

BorurioN. In equation (6) each term is of degree two. Such
an equation is called homogeneous of degree two. (Note that
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homogeneous equations there can be no constant ferm, for such
a term iz of degree zero.) We can solve by setting y = fz in the
homogencous equation, getting

622 — Tiz® + 2% = 0. (8)
Divide * {(8) by x2?, getting
22 —-Tt+6=0, O\
3 ~\
t =2 2_)' ”:‘. \/
AN 3
Substitute ¥ = 2z In (7): \,m:\i'"
$2_2$—4:=0, _ ."\\‘;
z=1:% V3, R4
y =2z = 2(1’¢‘,>5).

Substitute y = 2z in (7) and reduce™N"

’v

R

y :\;..f
The comp,l‘g\ie"\zs‘élution is

N\ \ =
[t =24 V5

1

v= 20+ VB, Ir=1-Yay=201- V5],

h.\“;
N/ ( 3 4+ V73 9+3V73)
g=—— gy =)
4 8
3 — V73 9 — 373
(:c: 4 Y= S .

* When we divide an equation by an expression involving an unknown we
must set the cxpression squal to zero if possible. Here, therefore, we should
seb 4 = 0. But z = 0 in (6) yields y = 0. The pair of values (= =90,
¥ = 0) however deesnot satisfy (7).
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EXERCISES VII. E

Solve for  and y:

1, 224 ¢ = 74, 2 &2 4 4y = 25
xy = 35. xy = 0.
3. 2 + 2y = 50, 4, z? — zy = 63,
2y + ¢ = 50. xy — yt = —18 A
B. 2% 4 3zy = —27, 6, x? — 9% = —33, R
2y + 4u? = b2, x—+ 3y =5 <\)
7. 2% — ¢ = 08, 8. a® + 8y* = 280,
z—y=2 z 4 2y = 10
9, zt — y* = RO, 10. x3 + ¢ =218,
a? — yt = 8. — oyt = 100,
11, =%® 4 Say = 6, 12, x* + ?Jr = 91,
10z — 3y = 29, xy*{—a:y-—Szi
13. 622 — zy — 2y = 0, 14, A02? — 172y + 3y =0,

y = 2x2 — 4, Ot = 3z — 5.
16. 82® — 4oy — 2y = 18, 16. 42 + day — 32 = 0,
322 — ay — 4yt = 0. vf’;’ 5z2 + 3xy — 4y? = 33.
z Kby % 55 5
1. - 4 18 =
R T 30—y Getay 2
(@ + )% = 43 @+ —y =12

19. Find the p@mve square root of 5 + 2v6.

SOLTFTION. 1;\/5+\/§=V5+2 6.
Squa.né\ x+2\/x_y+y=5+2\/a.
) .}%llows that
rty=2a
2\/a:y = 2Vg.

These equations have the solutions ¢ = 3, y = 2, and z = 2
y =3 Thus, V5+92V6 =+V3++2 This may "
checked by squaring V3 + V2.

Find the positive square roots of the following quantities:

20. 8 + 2V15. 21, 11 + 6V,
22. 31 — 10V8. 23, 9 — 2V14,
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94, 17 — 12V2. 925. 21 + 6V10.
96. 30 -+ 12V6. 27. 385 4 150V,

64. Graphic representation.

Quadratic equations as well as linear equations can be
represented grapbically, although the plotting is usua]ly
more difficult. Graphic methods are of little use in the
actual solution of equations but often give a clearex mean«
ing to results. Points of intersection of curves correspond
to pairs of real values of both variables satisfying theequa-
tiens; tmaginary values do not appear on the graphd

Points of tangency of the curves correspond) }0 double
solutions. O

A\

) ¢ 3

Example 1. '

Draw the curves represented by, s:nd"solve, the following equa-
tons:

R Q)
SN g

-'C“ky = 25, (L

\\..’ y = 2% — 5. {2)

H

N\

Sovvrrox, Phédirst equation is that of a circle with its center
at the origin #od having a radius of 5 units. For the coordinates
& and y of\@".} point on such a circle are (since 2° + y* = 5% the
sides of a’\ight triangle whose hypotenuse

:y\—xzqs i 5. (See Fig. 12))

7]
‘m‘,x" The other equation / 5
y can be plotted by giv- 7 e ¥ .
0 —5 ing values to z and find- K/
s -4 ! ing the corresponding
+2 —1
+3 4 values of y. A number v

+4 11 of such values are shown
in the accompanying
table. The curve obtained by plotting them is a parabola. (See
section 56.)

Fia. 12

Q"
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Both curves are shown in Fig. 13.

v Following is the algebraie sou-
TN IT] tion:
_![ }‘l ( ]T”_
(=3, 3.4 From (2), .2? =y + & (3)
X \\ f' X Substitute (3) in (1} and corbine
\ O terms:
HAWNIERY] O
¥ty — 20 —\0
0,45 @ -5, 4
L , 7'.3}
Fie. 13 Substituteys* — 5 in (3):
: =, r=0 '(d&{ﬂe ToOt).
R
Bubstitute y = 4 in (3): P \%

x? = 9;;{2 r = 3.
The values are paired a% fBllE)WS:

(z =A% = —35) {double solution),
(e, y=4),x= -3 y=4)

Note that at\he point corre- Y
sponding to; the double solution, | =
the cupyvegare tangent. (4
t@b & 1)
\E)tampfe 2. 7' 15)
X' :
Plot and solve: O\<: -
Z '\
”‘(~' x? 4+ o2 = 25, (4) ]
N 4oy = Oz, (5)

BoLoTion. Equation(4)isthe
circle of example 1. Equation Fra. 14 )
(5) is- that of another parabola. Both curves are shown B
Fig. 14, Following is the algebrsic solution:

From (5), g2 = 2“" (6)
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Substitute in (4), clear of fractions, and transpose the constant

ferm:
4z? + 92 — 100 = 0,

25
T = 4, Z'
Substitute z = 4 in (6):
=29 y = 43, A
Ke
5 O
Substitute £ = — — in (6): A\
9 25 35 1KY
1o o2 = esi= N
y 1T YT ERt TR
N
The values are paired as follows: R

CNY 25 13,
($=4!y=3)y ($=4,y=—3),"a:~~=—1’y=?z ]

All four pairs of values sa;\isfy both equations, but the last two
pairs, in which y is jmaginary, do not appear on the graph.

The subject of graphic representation of equations be-
longs more Rr@f)érly to the field of analytic geometry, im
which simplér and more systematic methods than point-
bY-Point%Iﬁttmg are developed. Consequently we shall
not "g\gffurther into the discussion here.

e A\ W

VvV EXERCISES V. F

The instructor may require the student to draw graphs for
certain of the preceding exereises of the chapter.
For what values of & will the line and the curve, or the two
curves, be tangent?

1. x2 + y2 = 20’ (7)
y = 2z + E, {8)
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SorvrroN. Equation (7} is represented by a circle with

center at the origin and with radius V9D = 447. Equa-
tion (B) is a series of parallel lines, one line corresponding to

egch value of k.

Substitute the value of y from (8) in (7):

x? 4 4a% + dkz + k* = 20, \
5x? + 4kx + k? — 20 = 0. ',\‘\ )
7'\
Y Ordinarily thc1e,uould be two
N distinet roots ¢f lhls equation,
s EQ and Tz, W hle,h, if real, would be
Y s ? the absgideds of the points in
S & > > whichythe line cuts the circle.
7
/ T3 If, bhe line is tangent to the
N divele these values of z would
X' i \ Be the same, that is, equation
} 0 " (9) would have equal roofs.
N y. iy Making use of the fact that if
) SHEN ] a quadratic equation has equal
VAN roots, its diseriminant, b* — 446,
Fm\@& / must be zero, we find
\“’y' 162 — 4 - 5(ik®> — 20) = O,
or - \ k? =100, k= £10.
&
“Fhe lines ¢ = 2z == 10 will therefore be tangent to the circle.
{Soe Fig. 15.)
D)2 at 4y = 40, 3. 22 + y? = 20,
y=3z+k y = kx + 10.
4 284y = 25, B,oat+y2=Fk
4~ 3y =k 3z — 2y = 13.
6. y* = 8x, Ty 4+ 102 =10,
y=2x+ k. y=3%z+k
8 y? = 12x, 9. y = 22,
y = kx + 2. y =k — 2.
10, y = —32%, 11, y = 22* — 3,
y =22 +k y =4z + k.
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12. 9z® + 25y? = 225, 13, 92 — 16y = 144,
4z — by = k. bz — 4y =k,
14, y* = 2pzx, 15, 224 y? = %,
y = ms + k. y = mzx+ k.
x? yz x2 y2
16.(;-{—@-—1, 17'9_3;:1’
y=mr-+k y = me -+ Lk )
N
MISCELLANEOUS EXERCISES VH. G wl
Solve: 4
1 992 — 6ay 4 442 = 63, 2. x?+ 42 = 2500
8z — 2y == 3. 3x+4y~—15
3. 22 4 2 = 40, 4, 4z — 3yt 24,
¥y =2z — 2, 3:5#23;}1
boatt+yr—2—6y—16=0 O
z—y+3=10 o0
6. 322 + 4y? = 59, R N
5pt — Ty = —11, N\
7. 222 4 3y% = 30, NS, 42 — gy — 2y = —
822 — 2zy = 39. N\ 2ry 4 3y* = 24,
9 222 + Suy + 29 M-y — 4 = 0,
3z -+ 2xy -+ 3yP-Bx 4 By — 32 = 0.
10, 222 4 oy + 947~ 30, 11, Ba?+ Ozy + Syt +28 =0,
$2+3xy——\8y = —20. 2a? — Bzy + 2y* + 64 = 0.
12 2% — Jap ™ 2y* — 3z — 3y + 24 = 0,
Azt 7 y+ Sy —z—y— 44 =0
13. a2 +y = 148, 14. 0z7 + 432 + 277 = 0,
oy + 21 =0
I&\éxa—y — 387, 16, 8 4 3 = 102y,
2r —y =3 z+y = ry.
17, 2% — Boy — 3 =0, 18. 2* — i = day,
— 32y 4+ 10 = £ — Yy =Y.
wlolad o g ailoy,
x ry Y ' ¥
1 P

i
+—“5. y+;-ﬂ3.
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21, 622 — 1lzy — 102 =0, 22, z* — y* = 0,

2z% — 3y* — 4z = 18. x4yt = T2,

23, 23 — 3 = 98, 24. 2 + ¥ = 91,
%y — xy? = 30, iy + xy® = 84

25, z¢ 4yt = 708, (a) 26. x* + y* = 337, {a)
z+y=2 (b r+y=7 ()
SUGGESTION FOR SOLVING JLXERCISES 25 anp 26, Raise (1)

to fourth power and subtract (a). Divide by, 2\aid label
resulting equation (¢). Square (b), multiply, by 2wy, and
subtract {c). Solve resulting equation for 'y und combine
with (b). R4

27, 5t — 3y + 20 = —7, 28, a? 42y + 82* = 20,
42 — Ty - 322 = —32, 272 + 3z =4,
30% 4 4yt — 2 = 33. ey + 2 = 4,

oy +z+y+4=0 30 xy -+ 2z + 3y = 10,
ye+y+z+3=0 8 2z 3y -+ 4 =30

$2+$+z—5=0..;fj3 3zz + 4x + 5z = 28.
3L 224y 4 22 = 840 32, 2% 4 zy + 2z = 25,
4y +z=06,{ ¥+ yz + zy = 40,
y? = w2 ,a“z\ 2%+ 22 + yz = 16.
\\ i & . A na-
\ UGeESTION. Add the threeequa
\“ {ions.

33. Théa:ea of a right triangle is 84 square inches, its hypotenus®
\iﬁ\% inehes. Find its two sides,

. 3}4’.\ he product of two positive numbers is 144, the sum of their

squares 18 612. 'What are the numbers?

' 85. The product of two numbers is 288, the sum of their recipro-

calsis 3. What are the numbers?

36. The perimeter of a rectangleis 41 inches, its area is 102 squar®
inches. Find its dimensions. .

37. The perimeter of a right triangle is 40 inches, its area 13 60
square inches. Find its three sides. .

38. A group of girls bought a $30 wedding present for a frieod-
Two members of the group failed to pay their share and 253
consequence each of the others had to pay $1.25 more. How
many girls were in the group originally?
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39, A specunlator sold some shares of stock for $9072. Beveral
days later, the price of the stock having fallen $3 per share, he
repurchased, for the same amount of money, 4 more shares
than he had sold. How many shares did he sell?

40, 1f 3 is added to the numerator and to the denominator of a
fraction and the result added to the original fraction the sum
is 11, If 3 is subtracted from the numerator and from the
denominator of a fraction and the result subtracted from the
original fraction the difference is . What is the fractior}‘{‘\

41. Two pipes together can fill a tank in 2 hours. The smaller
pipe alone requires 1 hour and 10 minutes longer t}r@m“the
larger to fill it. How long does it take each pipe alefie to fil
it? &

42, One day two clerks, A and B, were addressing envelopes. In
the morning A bad addressed 150 before Bga.r'bed in to help
him. During the remsinder of the qug’ing they addressed
240 more, A working 3 hours altogetheér,) In the afternoon A
worked 3 hours and B 1 hour, in which time they addressed
360 envelopes. Find the average humber of envelopes that
each addressed per hour apd the number of hours that B
worked in the morning. ™

43. Tn g two-place numberdhe’square of the digit in tens’ place is
5 loss than the supy 6f'the digits. If the digits are reversed
the number is incréased by 45. What js the number?

44, The sides of a-fridngle are 10, 12, 14 respectively. Find the

medians. N
45. The mediahé of a triangle are 4, 5, 6 respectively. Find the
sides.§ -/

46, A sum of money invested for a year brought $54 interest. If

sthie rate had been L per cent more and the principal $3060 less,

{"\'the intercst would have been the same. Find the principal
and the rate.

47. A rod rests upon a fulcrum which is 13 feot from one end of the
rod. A weight of 12 pounds suspended from thig end of the
vod causes the rod to balance. If the weight is suspended
from the other end of the rod it is necessary to guspend a.
56-pound weight from the first end in order to make the rod
balance. Find the length and the weight of the rod. (See
p. 28.)
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48, The laborers in a certain trade have been receiving $77 a week.
They are striking for the same amount per week for 4 les
hours per week, which would increase their hourly wage by
171 cents. What is their present hourly wage?

49. The area of the page of a book is 463 square inches, the area of
the printed part is 27 square inches. The margin at the fop
and sides is § inch wide, the margin at the bottom is | jnch
wide. Tind the dimensions of the page.

60, In 5 hours a motor boat can either go 24 miles dowasjrean
and back or 27 miles downstrecam and 22 miles batk. Find
its rate in still water and the rate of the current:\

Bi. A boat made a trip of 6 miles with the txde and back against
the tide in 1 hour and 52 minutes. If.tk8 tide had been half
as strong the trip would have been made in 7 minutes less
time. Find the rate of the boat in st water and the rate of
the stronger tide. \

52, An airplane flew a certain distinte at a uniform rate, If this
rate had been 40 miles perlbour faster the trip would have
been made in 24 minutes\ess time. If the rate had been 20
miles per hour slower th,e trip would have required 16 minufes
longer. Find theaate of the plane and the distance it flew.

§3. Two airplanes stz’»rtcd at the same time from airports A and B,
the first gmgg ‘rom A to B, the second going from B to &
Each trayelcd at a umform rate. The first reached B 45
minutes; Bfter they passed each other, the second reached A
1 hox};md 20 minutes after they passed each other. Find the
timéthat each required to make the trip.

MQ&man is at a point A on the bank of a straight river. Hecan

) “row in still water at a rate which is 25 per cent faster than he

()" canwalk. If he rows downstream to a point B, which is 4

miles below A and on the same side of the river, and then
walks, in a direction perpendicular o the bank of the river
10 a point C, 3 miles from B, it takes him the same amount of
time that it does to walk straight from A to C. I he walks
back from C to B and then rows upstream to A, the * return
trip takes him an hour and a half longer than the trip fron
A to C. Tind his rate of walling, his rate of rowing in still
water, and the rate of the current.
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Inequalities

2 ‘\
65. Inequalities. N\
The statement “ a is greater than 57 (@ > b), aend b
being real numbers, means that @ — bisa positiyé;’number.
Tf we have en axis (Fig. 16) on which the positive direction
S e = S M W T 2 B

Fie. 16 \

is to the right, @ will be to the nght of b.  Similarly, “ e is
Jess than b " {@ < b) means that ¢ — b isa negative num-
ber, and on an asis directeditoward the right, e will be to

the left of b. Such exgtessions are : N
called inequalities, ﬂn inequalitios bavn ® c
refer to real numbersn> Fe. 17

Two inequalifies ¢ > b, ¢ >4 in
which the sighs-point in the same direction are said to be
alike in serfge (or order); two inequalities a > bc<din
which hesigns point in opposite directions are said to be
o\ opposite in sense (or order).

Ne <5 % " The statement a = bis read “ais
\V - i greater than or equal tod ”’; the state-
. 18, ment @ < b is read “ o is less than or

equal to 5.

Some inequalities are satisfied by all real numbers, for
example, 22 + 3 > 0. Such inequalities are called absolute
inequalities. Other inequalities, called conditional inequal-
ities, are satisfied only by certain numbers. Thus, the in-
equalityx —3 > 0 issatisfied only by numbers greater than3.

127
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66. Fundamental properties.

The following propertics are useful in dealing with
inequalities. Their proofs are simple, following almogt
immediately from the definition of an nequality, The
proof of Property I only will be given. Proofs of the others
can be effected in a similar manner. N

I. An inequality is unchanged in sense if the sam\number
is added to or subtracted from boih sides. That i8,ifa > b,
thena +c¢>b+4canda —¢ > b — ¢,

Proof. By hypothesis, ¢ > . A
Let a — b = p, which will be positive, sinee @ > b, Then

@te) = b+e) =avs =

N
That is, e+ ¢ > b,
Similarly we can prove thata’'— ¢ > b ~— ¢,

Example 1. oW

*

V10>,
A0+3>84+3,

Example 2, , i"\\
\

A\ 10> 8,
oy 10 —-3>8— 3.
11 \'Aﬁ, inequality is unchanged in sense if both sides are
mgt\l\'plied or both divided by the same positive number.

.f’f’o Example 3.
O
’“\‘3 w4 2 < 3’
\ 5-2< 5.8,
Example 4, _
32 = 15,
=Y

II1. An inequality s changed in sense if both sides are
multiplied or both divided by the same negative number.
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Example 5.
2 < 3,
. -2 > —3.
{Each side has been multiplied by —1.)

Example 6.
8> 6, N
8 (~2) <6+ (—2), K

—4 < —3,

IV. An inequality of positive quaniities 13 mchanged in
sense if the same positive power or same pomtzw root of each

side 1s taken. AN
' RS
Example 7. PN,
3> 2\
32 ..>,32'2:
Example 8.
Q
NN 49 > 25,
“Qwﬁ>V_
|
x.\’...‘ EXERCISES VIll. A’
Pro(’“\a‘:}ie following:

1 If‘z}u\;\ﬁrsz of three quantitres is greater than the second, and the

(setond greater than the third, then the first is greater than the
\;\iﬁfmf that is, if a > band b > ¢, thena > ¢

If unequals are added to unequals n the same order, the sums are
unequal in the same order; that is, ¢f ¢ > b and ¢ > d, then
a+ec>b4d

3. If unequals are subtracted from equals, the results are unequal in
the opposite order; that is, if ¢ > b, then c—a<c— b
(8how, by means of an example, that if ¢ > band ¢ > d, then
it does not necessarily follow thata — ¢ > b — d.)

L Ifa>bz0ande>d = 0, then ac > bd.
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67. Solution of inequalities.

Inequalities can be solved, by applying these funda
mental properties, very much asg equations are solved by
the use of axioms concerning equals. Graphs arc often of
assistance, especially in the case of quadratic inequaliiies,
in determining when an inequality is satisfied. 2\

Example 1. e

Find the values of z for which e
7
3z — 4> rY -+ 2. \\

Y SoLuTIoN.

ANY;
/ Multiply by 2: 0" 62 — 8> Tz + 4.
Bubtract 7z al{d’}hd 8: -z > 12.
, I |+ Multiply by %2 x < —12
X O 7 X 2N
/ d Exapiple 2.
Gi{ré"s;, graphic interpretation of the in-
7 et\}ﬁaﬁty 3z — 7 > 0,
‘," \i’ SoruTion. Set y = 3z — 7 and draw the
) graph. It is seen that the graph crosses the
Y @ 2-axis between 2 and 3. Solving algebra-
Flg\lg ) ically, we find
) ~
P\ 3>7, x> é

«d

"\ ’ Example 3.

...\\

AV Find the values of = for which
2243z~ 4 > 0.
Sovvrion.  Draw the graph (Fig. 20) of the function
¥ =2a*4 3z — 4.

It is seen that the graph crosses the z-axis af —4 and 1 and-that
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the funetion is positive (Le.,, > 0) for values of z outside these

values, namely,
e<—4dorz > 1.

Algebraically we can solve by complet- Y
_ing the square: ",‘ ,"
22+ 3z > 4, X ~L41l oY
0 i 5
9 -
2 = s
a:+3:c-!-4>4+4, )
3)2 25 AL
& + — > — _ VY
( 2 4 X F};, ap
This last inequality will hold if PN
RS
3_ 5 . 3 5
x+§>§ orif ’33:1‘172 g

that is, if 22 N
. x> 1 qrif' 2 < -4,

A satisfactory way of wolving a quadratic inequality is
to replace the ineg 4@1{33} sign by an equality sign, solve the
resulting equatiqn,f%nd note from the graph, or by testing
with numbersz.\‘ighether the inequality is satisfied between
the roots og,Qutside of the roots.

N\ :
68. The\\geheral quadratic function.
Conkider the general quadratic funetion,
7'\

O ) az® + be + ¢, (1)
\
which may also be written in the form
alz — z)(x — 22), (2)

%, and &, being the roots of the equation obtained by setting
the function equal to zero.
If these roots are imaginary, the function eannot change
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sign. For we recall (see section 56) that when a quadratic
equation has imaginary roots, the curve representing the
corresponding quadratic function is wholly ahove or wholly
below the x-axis (because if it crossed, the cquation would
have a real root). It must thczefore have the sign of ¢,
since when = 0 the functionisequal toe. Butif the roots
are imaginary we must have & — 4ac < 0. This requires
that @ and ¢ have the same sign, since they are reapum-
bers. Therefore we can state that in this case ax2-34= bt + ¢
has the same sign as a and ¢ for all values of a} -

If the roots are equal (z, = z,), we mayy; Write the fune-
tion in the form o

alr — xl)g."\\: ’ @)

This will be positive when and pﬁb when a is positive and

z # ;. (The symbol = means*’ is not equal t0.”)
- If the roots are real and. dlffm ent and a is positive, sup-
pose 2; < & From (2) wé see that the factors 2 — 2; and
& - z; wWill both be nepative when z < #;, and that conse-
quently for such valugs of x the function will be positive.
When z is bet Qén 2y and x5, @ — ; will be positive and
T — zp will be%egative The epr ession (2) will then be
the procuap of three factors having the signs +, —, +
respecti ely and the function will be negative. When
= > 228l the factors will be positive and the function will
be positive.

Wt o is negative the situation is reversed, and the fune-
\51011 a(® — a1)(x — 23) will be positive only when # is
) between z; and 3. Results are summarized in the table

below:

1f Then az® 4 bz + ¢ will have
b — dgeis same gign as g for

All veal values of z.
TPz
T L, 2 > xe (U 2y < aw).

+o |
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~ EXERCISES Vil B

Bolve the following inequalities:

1 2> 7. 2. 2x—1>5.
3.7+ 3> 5z + 6 4. 3z + 1> 5z — 4.
x+4 BHr-—=6 2—3_ 66—z
g < 6 — -
Tt~ 5x—62>0 8. 22— G+ 8 <0, Ko
9. 22—4z+2> 0. 10, 12—z —a2> 0. AN
1l 22 — 22 — 5 > 10. 12, 6z — 22 < 9.
13, 222 + 50 — 12 > O, 14. 1227 -+ 11z — 12 <3
16, 2c2 — 6z + 7 > 0. 16, 3a% — 4z -+ 5 <OV
17, 10(z% — 2 - 1) > 222 4+ 202 — 17.
18, 522 4 6z + 7 < 32 -+ 22 + 10. RN

19, @+ 2@ — D —3) >0
2, (z—12z—3)>0 21 (= —51;)% —3)2> 0.
22 (z— 1)z —3)2> 0. 23 z(a?>~1)> 0.

24, (2 4+ 32z — Lz — 4) > 0..3%

26, (z + 3)(z — 1)z — 4) >O°

26. (z + 3)(x — 1z — 4230

27. (z + 3)(x — D)z —<1§3 > 0.

3 2

28, —— O
T2 T —d

/7N

3

\ )

SOLUTIQI{."} “Subtract 2 /{(z — 1) from both sides:
'\'...’ 3 : 2

PRYs
,§~~’ r+2 z-—1
”\«Clear of fractions by multiplying botb sides by the expression
J(z + 2)% (z — 1), which is positive unless z is equal to 1
or ~2:
3+ 2 — D — 2@+ 22z — 1) >0,

(x+ 2z - DB—1 — 2+ 21 >0,
4+ 2z—DE—7>0

>0

By studying the signs of the three factors when & is in various
intervals, we see that the inequality is satisfied for

—2 <<l and x> 7.



134 INEQUALITIES {Ch, VIII

3 2 3 3
9. . 30. .
2 x—-2>x—|-3 22:+3>4x—7
1 2 3 2
3, —+——>0. 32. —.
x2+x—3> :c-i-4>;r:‘l
z-+1_x—5 z—1_ -3
33. . 34, .
x-3>a:—{—7 x—3>x——5 £\
Ilind the values of k for which the roots of the foliqwmg
quadratic equations are real and different: O

SuveeestioN. The discriminant must bepositi;vé,. ¥
35, 2®+kx = k. 38. 162® — 6z HB)=
3. 2+ k2 + o+ k=0 38 (h-+ 1)z —f—\(:c+1)k2-0
39, %+ k(z + 1) + 2k + 1) + &k = 0.
80, ka? + hr — B2t +k —5=0.

Find the values of & for thh\he roots of the following
quadratic equations are 1mag;mary

41, kx4 22 — 8 = (. .‘42 2502+ 52+ 1=ke
43, x2+k2+kx—!—3x—»3k
44, (k,— 3)z? — (:v-—-3)k2—0

Find, in the ff)h‘omng exeruseﬂs, the values of k for which
theline mteréq?}ts the eurve in two distinet points:

SDGGESTION The roots of the quadratic equation obtained
by subsiituting from the linear equation in the quadratic
mygt/be real and different.

46 a2 g = 40, 46. 22 4 y? = 36,
yv—Sx—!—k y = 2z 4 k.
M\:"}T y? = 8z, 48. 2? = 8y, . .
\‘s ¥ =2z - k. 4 =2z+ k.
49, z? + y* = 25, 50. 2+ 122 =0,
dr—3y=rF y=kx+ 2
01, 2% -+ o = 49, 02, #* — y2 = 36,
y = ka + 25. y=kx+ 8§
63, x* + 24y = 24, B4, 1622 — 25y% = 400,

y=x+4+k =gz -k



CHAPTER IX

Proportion and Variation

E O

69. Ratio. O

The ratio of @ to b is the quotient @ + b, that is, t(h&frac-
tion a/b. The ratio may also be written a: b ,\

70. Proportion.

\
A proportion is a statement that tn@raﬂos are equal,
for example,

&b
\d’

o =]

:" ll

The quantities b and p\"ah'e called the means of the propor-
tion, ¢ and d are ¢ lqti the extremes.

The quanuty d s called the fourth proportional to a, b
and e. \ 25

It ;= 3?13 called the third proportional to @ and b.
a: \\
IS =502 is called 2 mean proportional between a and b.
Q~

71. Theorems on proportion.
Given

I

o

ey

=B~

_ prove the following theorems:
135
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I. ad = be. i.e., The product of the means is
equal 1o the product of the extremes,

e b This proportion is said to be ob-
il P tained from (1) by alternation.
b d This is said to be obtained from
1. a ¢ (1) by inversion. N
a-+b ¢+ d 'Thisis said to be obtamq(j\from
Iv. 5 d (1) by composition. SUGGESTION.

Add 1 to each side( of.‘.\(l).
@« —b _¢—d Thisis said to b&bbtained from

V. B d ~ (1)bydivision{StreersTiox. Sub-
tract 1 frqxg:each side of (1).

a+b e+ d This is,.s’éia to be obtained from

Vi a—b ¢—d (1) byeomposition and division.
y a_@g e g
Given i

prove m}
VII Watcetetg

[¥
b+d+f+h b
792. Di;e\i:i;rariufion.

¢l "of the statements y varies directly as z,” ‘¥
xja,fiés as z,” “y is directly proportional to z,”" ** y is pro-
~pottional to 2,” in a mathematical sense means

o \ ¥

V y = kx, (1)

in which % is a constant called the constant of variation or
constant of proportionality. (The statement * y varies
as " is sometimes written y « z, but the form (1) is de-
cidedly preferable.) The constant & in (1) can be determined.
if any pair of corresponding values of z and y, except £ = 0y’
¥ = {}, is known. :
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The statement “y varies as the square of z’ means
y = ka’. :
73. Inverse variation.

The statements ““y varies inversely as z,” and “y is
inversely proportional to £’ mean

N
k £N
y=-- KoY
x A\
. . R s ¥
74. Joint and combined variation. N

The statcment * z varies jointly as z and y 7’ {ié'ans.
\:"’3

z = kxy. v
Y p \\;
The statement *“ w varies directly aswndnd the cube of y
and inversely as the square root of £ Ineans
kfl?ﬁg::a
W = Th= .
Y

EXERCISES IX. A

1, If y varies as a aﬁéﬁ};’equal to 11 when z is 7, find the value
of y when r ig dqial to 5.

PN\Y;
SOLUTIQA’*:': y = kx.
O 11
AN =17k k=—-

!

§Mving determined the constant &, we can state the law of
N variation:

Yy =—2z.

This law is now ready for use. For example, whenx = 5 we

have

11 55
y-—?"5-——7—.
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2. The pressure on a sail varics as the area of the sail and as the
square of the velocity of the wind. When the velocity of the
wind is 36 feet per second, the pressure on a square foot of
sail is 3 pounds. Find (a) the pressure on a square yard when
the velocity is 20 feet per second, (b} the velocity of the wind
when the pressure is 10 pounds per squarc foot.

SOLUTION. - S
P = kavt. \ PR \:\
3=Fk-1(36)?2 k= B0
P= G o
@  p= (3{;)29(20)2 = 23—" ::\‘S.{gib.
(b) 10="2 1. '

@oye ! QN
10(36)24 ™
—:3': N

=

&0 o
'v’ﬁ\‘SG 3= 12v/30 = 65.7 ft. per sec.

3, If y ¢avies as x and is equal 0 20 when # is equal to 15, whatis

the Aalue of y when x is equal {0 127 'What is the value of #
“when ¥ is equal to 127
4\If y varics as x and is equal t0 3 when 2 is equal to 7, what s
o % the value of ¥ when z is equal to 4;;
\ 3 B I y varies as the square of » and is equal to 12 when @ is

equal to 4, what is the value of y when « is equal to 2; when
T iz equal to 37

6. The quantity z varies jointly as « and y and has the value 12
when z is equal 40 3 and ¥ is equal to 5. (a) Find the value
of z when z is equal to 10 and y is equal to 6. (b) Find the
value of y when % is equal 0 21 and z is equal to 14.

7. If y varies as the square root of # and is equal to 16 when & is
equal to 25, what is the value of y when z is equal 0 97
What i the value of 2 when yis4?
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8. If y varies as the square root of  and has the value V2 when
z has the value 8, what is y equal fo when z is equal to V27

9. If y varies inversely as z and has the value 24 when z is equal
10 3, what is the value of y when z is equal 1o 227

10. The quantity z varies directly as x arnd inversely as ¥ z is
aqual to 12 when 2z is equal to 4 and ¥ is equal to 3. Find the
value of z (a) when x js 3 and y is 4, (b) when x is 6 and y is 27.

11. The quantity z varics directly as the square root of z and
inverscly as the cube of y. If z is 4 when x and y have. the
values 3 and 2 respectively, what is the value of 2 When 4 &2y
and y iz 4? X

12, Hooke’s law states that the extension of a spring. Ora.n elastic
string beyond its natural length varies as thieSorce applied.
If a weight of 6 pounds attached to a sprigg causes it to
stretch from a length of 10 inches o a {:@th of 11.5 inches,
what weight will cause it to streteh to\d Yength of 1 foot?

13, The power required to drive a fan ® Sanles as the cube of the
speed. If 1 horsepower will drive ‘a fan at a speed of 470
revolutions per minute, how fagt will 8 horsepower drive it?

14, If it requires 0.1 horsepower't t drive an electric fan at speed
of 1600 revolutions pef“™minute, what horsepower will be
required to drive it at’ aspeed of 1200 revolutions per minute?
{See proceding exercise.)

15, The force of théywind blowing perpendicularly onto & flat
surface varie&/directly as the area of the surface and the
siquare of Ahe*velocity of the wind.  When the wind is blow-
Ing 20 mileg per hour the force on an ares of 1 square yard is
18 D,QO’L@'S‘ What is the foree on 1 square foot when the wind
is blowing (a) 16 miles per hour? (b} 23 miles per hour?

..\@) What is the velocity of a wind which produces a pressure

\of 8 pounds per square foot?

18. The complete period of a simple pendulum (the time required
for it to swing across and back) varies directly as the sguare
root of its length. A pendulum 1 foot long has a period of
1.11 seconds. (a) What is the period of a pepdulum whose
lengthis 1 yard? (b) What is the length of a pendulum whose
period is 2 seconds?

17, Tf it takes 8 days for 2 man to dig a hole 8 feet square and 8
feet deep, how long will it take him to dig a hole 4 feet square
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and 4 feet deep? Assume that the time roquired is propor-
tional to the volume of the hole,

18, It takes 11 weeks for 14 men, working 8 hours a day 1or 6 days
a week, to complete a cortain job. How many weeks will it
take 24 men, working 7 hours a day for 5} davs » week, to
complete the job?

19, 1f one weight draws up another by means of a string pagsing
over a fixed pulley, the distance passed over by each weight
in & given time varies directly as the difference batween the
weights and inversely as their sum. If a 9-péuhd weight
lifts a 7-pound weight through a distance off8¥eet in 2 sec-
onds, how far will a 5-pound weight liff 4)3-pound weight
in the same time?

20. The power required to propel a shipN8 proportional to the
eube of the speed. {a) By what per ¢ent must the power be
increased to increase the speed J(hfer cent? (b)) If & speed of
8 knots requires 1600 horsefower, what horsepower will be
required for a speed of 10%nbts?

21, Boyle's law states that &b constant femperatiure the pressure
of a gas varies inversély’ as its volume. I a certain amount
of gas is under a pfessure of 20 pounds per square inch and has
a volume of 225,6ubic inches, what will be the pressure if the
volume is (S.J\\décreased t0 200 cubie inches? (b) increased to
250 cubighinches?

22. (a) By(¥hat per cen$ must the volume of 1 gas be decreased
if the.pressure is to be increased 50 per cent? (b) By what
per'cent will the prossure of a gas be increased if the volume is

) \'ﬁécreased 20 per cent? (Sce preceding exercize.)

23, The safe load for a beam supported at both ends varies.

) 2\ D directly as the breadth and the square of the depth and -

/ versely as the distance between supports. Ifa2 X 6 (inches)
wooden beam whose supports are 12 feet apart has a safe load
of 900 pounds, what is the safe load for a 4 X 8 beam of tbe
same material for which the distance between supports ¥
15 feet? :

24, The quantity of water discharged over a weir, in a given inter-
val of time, varies direetly as the length of the weir and the
three-halves power of the head. {The head is the different®
in height between the level of the crest of water flowing 0ve
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the weir and the level of still water above the weir.) If the
rate of discharge of water over a weir 3 feet long and having a
head of 9 inches is 390 eubic feet per minute, what is the rate
of discharge of a weir 5 feet long and having a head of 1 foot
4 inches?

25. The weight of an object above the surface of the earth varies
inversely as the square of its distance from the center of the
earth. If it were posgible to project an object which weighs
10 pounds at the surface of the earth to a point 1000 miiles’
above the surface, what would it weigh at that. helght‘?
(Assume the radius of the earth to be 4000 miles.) <

26. The surfaces of similar solids vary as the squares of corre-
sponding linear dimensions, their volumes yaty)ds the cubes
of corresponding linear dimensions, Deriyea formula which
describes the variation of surfaces of s:,mﬂa?l* solids with respect
to their volumes,

27, The horsepower that can be safely t.ra,nsmntted by a shaft
varies directly as the numbex? of ‘revolutions it makes per
minute and the cube of its diamete.r If a shaft 3 inches in
diameter making 200 revqutlons per minute can safely trans-
mit 60 horsepower, what horsepower can be safely trans-
. nitted by a 2-inch shﬁ{t making 300 revolutions per minute?

28. The electrical reé;.gtance of a wire varies directly as its length
and inversely asthe square of its diameter. If a copper wire
100 feet long’and 0.024 inch in diameter has 2 resistance of
1.8 chmgy what is the resistance of a wire 150 feet long and
0.036 ifiely'in diameter?

29, The“amount of ¢lectrical current required to melt a fuse wire
vatids as the three-halves power of the diameter. If the
bllrrent required o melt a wire of diameter 0.06 inch is 27

) ampercs, what current will melt a wire of diameter 0.04
inch?

30. The so-called standard error of the arithmetic mean of a
sample varies inversely as the square root of the nunber in the
sample. (a) If the standard error of the arithmetic mean of a
sample of 20 items is 3.24, what is the standard error of the
arithmetic mean of a sample of 45 items? (b) What sample
size would be necessary to reduce the standard error to 1.087

31, Kepler’s third law states that the square of the time required
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32,

for a planet to revolve aronnd the sun varies as the cube of its
distance from the sun. Jupiter is 5.2 times as far from the
sun ag the earth is. How long does it take Jupiter to revolva
about the sun?

The number of vibrations made by a siretehed string varies
directly as the square root of the strotehing foree, or tension,
and inversely as the product of the length and the diaméter.
(a) If a string 3 feet long and 0.05 inch in diameter nhratea
720 times per second under a tension of 90 pounds,} hov» many
vibrations per second will be made by a 2-foot™ atrmg 0.03
inch in diameter when under a tension of 4U“Iidiihdﬁ 7 (b} To
what tension must a string 1 foot 3 mvh(,,\l@ug and 0.09 inch
in diameter be subjected to make it'3abrate 640 tames per
second?

The illumination from a source Oi@lt varies inversely as the
square of the distance from thagource. A piece of cardboard
is midway between two squrces of light of equal intensity
which are at a distance .@’;ipart. Its plane is perpendicular
to the line joining theltwo sources. Tow far must it be
moved, being kept always in this line and perpendicular to i,
80 t.hat the tota}illumination which it receives {i.e. oD both
sides) wiil be, ten\tlmes as great?



CHAPTER X

Mathematical Induction
and the Binomial Formula

75. Mathematical induction. RS

An extremely important type of reasoning, }s\the process
called mathematical induction. It is exttemisly powerful
in effecting certain proofs, especially m>establishing the
validity of certain types of formulas.\We shall illustrate
the method by prowng that the ¢ Sum of the first n odd
integers is equal to n%, that is, N

Y
ol
<

4
1+3+5 + -‘-j-';—[— (2n — 1) = n4 (1)

The proof consists @f\two parts:
Part I. The fofm\lla ig true for certain particular values
of n, e.g.,

A</

for n Al 1=1 o 1=1;
fOI\Q - 2, 14+3=2, or 4 =4;
for\n~3 14+434+5=23, o 9=9

\"\ ‘;P’amrt II. Let us suppose that it is true for some integral
value of n, say n = %&; that is,

14+3+56+--+@k-1) =72 (2)

Then we can show that it is true for the next integral value
of n, namely, & + 1.
Han=k41 then 20 —1 =20+ 1) —1 =2k + 1.
143
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Add 2% + 1 to both sides of (2):

1438454+ @ -1+ @k+1)
SR = (kDS @)

Thus, if formula (1) is true for n =k, 1t is true for
n =k + 1. Butwe have secn that it is true for the patticu-
lar valuesz = 1,2,3. Therefore, since it is true forn =13,
it must, by Part II be true forn = 4; since tm&forn = 4,
it must be true for n = 5, and so on for any posxtwe integral
value of n whatever.

In general, a proof by mathematlcal\mductlon conslsts
of two parts: .

Part I. A verificalion that thesproposition or formula %
true for the least integral value of n}'or which f s to hold.

Part II. A proof that if ity true for any tnlegral 1 value of
n, say n = k, then it is tmejfor the next value,n = k + 1.

The formula wﬂltthen Be true for all values of n from the
verified value on up™

The two partsof the proof do not have to be established
in the order, i which they have been given, as they are
quite independent of each other. Both parts, howeveh
are absolutely necessary to the proof, as is shown by the
follo mg llustrations:

CGonsider the formula

24446+ o+ 20 = n® — 50 + 120 — 6
Weha.'v,r‘e
forn:l.\il,

2=13—5-12+12-1-6, oo 27
forn = 2,

24A=2 -5.22412.2 -6, or 6 =6

N
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for v = 3,
2+44+6=3"—-5-324+12-3 — 6, or 12 =12.

Thus, we might be tempted to assume that the formula is
truc for all integral values of n. However, Part IT of the
mathematical induetion proof is impossible to demonstrate;
the formula is not true for any values of # other than 1, 2, SN
If we substitute n = 4, for example, we are led to the gon- -
tradictory result 20 = 26.
Similarly, the formula

N

§
24+44+6+---+2n '
= n(n+ 1) + (n — D) (n — 22" (n — 100)
\\
holds for all positive integral values o£% up to and includ-
ing 100, but fails for n = 101. o\
On the other hand, consider ‘s]?lg formula

v‘.

1+2+3+1K4ﬂ=émn+U+L

©
Assume that it is ttue for n = k. Then
i
W 1
L2 F8 4.tk =§k(k+1)+1.
N\

fkddk\”éf- 1 to each side:

fP24+34. db+E+1)
=%k(;;+1)+1+(k+1)=%(k+1)(k-|—2)+1-

Thus, the formula is true for # = & -+ 1 if it is true for
% =k, and Part II of the proof has been demonstrated.
However, Part T cannot be proved, since there can be found
ho value of »n for which the ¢ formula " is true.
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EXERCISES X. A

Prove by mathematical induction:

1L14+2434+--+2=1inn+1)
2448+ 12+ -+ 4 4n = 2n{n + 1).
A1+54+94+--F+dn—3)=a2r— 1),
4124224324 - F 02 = In(n+ 1120 + 1),

BB = (1 +2+3+ -+
6. 20422+ 22 4.0 21 =20 — 1 A

28N
T 21420420 4o g 2 = 1 — 2, A\
8. 3+3: 43+ +3v=33 — 1)
9.1-24+83 44564+ 4 2n—1)2r AN\ )

= Xath + 1)(dn — 1),
10 2:44+4-64+6-8+ .-+ 2020 2
D)= dnln + Din+2)

P\

1 1/ 1 X, no
11'2-4+4-6+b'-8+ +2n(2n+2) 4(n + 1)
12.1:34+ 35457+ C@n — D2n+ 1)

oON = ln(4n? + 6n — 1}

1 1 1 N 1 n
1813 5y 7 Tt e DER D)t
14, 1 3+2 32+3 B b3 =@ — 1) 30+ 1
15.2-12+3-.\22\‘#4-32+-—-+(n+1)n2

= &n(n + Din + 2B+ 1)
16. 1 4+°’5+5 6+ +nn+3)

x\ ':
»\l

= 1p{n + Lj{n -+ 5.
1
n(n + Din+2)
__nlntd
- 4(n + L){n + 2)
4 5 6 e
1:2-3 7 2-3.4"3-4-5' " atn+Dr+2)
T i+ Din+2
5 n—+2
22 T34 “'+n(n+1)-2ﬂ

=1 -

+ +o

1 1
2-3-4 3-4-5

{/‘

——
(n+1)-2
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1 1 1 i
20._1+4+9+ +n2<21 =
21, a7 «— ¥ is divisible by ¢ — y.
22, The sum of the interior angles of a polygon of n sides is
(n — 2) . 180°.
23. The number of diagonals in a polygon of # sides is in(n — 3}.
24, The number of fines formed by joining # points, no three of
which lie in the same straight line is §nin — 1). .

Prove or disprove that the following are general formulags -

25, 14+ 2434 +n=212— lln*+ 2n - 12~
28, 1 + 8+ 27 + - -+ n¥ = 3(60° — 17n2 4 250 — 22\
27.1-24+2-8-+3-4+---+amn+1) N\

: = n{nNE D(n + 2).
28, 2+4 46+ -+ 20 = nt = 1003 4 36n3" 400 + 24.

11 1 1 1 A Yn
2. 1.2+m+3°4+."+n(n+}j'=n+l

30 J_+_i_+_1_+...+ "’"1 = L.
"1-3 "85 5.7 Ba—1D2e+1) 2n4d
3. 242249 4. L2 =20 2
32.1-44+4.74+7-10+00+ B =@+ 1)
i\ = n(8n? 4 3n — 2).
8. 12.2 4 22.3 4 M- + 20+ D)
= Luln + x4 2)@n + 1.
1 1 NG 1 1
34.E+§—!—@“5{—-+;3—2<3—n'
35. n? — g #3541 is a prime number

O\
76. T.hé, binomial formula.
\»I:?jz:the method of multiplying polynomials we find

(@ +b) =a +b,

(a + b)? = a® + 2ab + V7, )

(@ + b)® = o® -+ 3a%b + 3ab® + b5,

(@ + b)t = a* + 4a% + 607 + 4ab® + b

If » represents the exponent of the binomial & +bin
any of the above expansions, we see that

QY
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1. The first term 18'a™.
I1. The second term is na™*b.
III. The exponents of a decrease by 1 from term to term;
the exponents of b increase by 1 from term to term.
IV, If in any lerm the coeflicient is multiplied by the
exponent of a and divided by the number of the lerm,

the resull vs the coefficient of the next {erm. A
‘We therefore write & \)
n o n{n —1) a2
n — n - T b
fat+bd)=a +1a b—l——1 > ...\‘
nin —1(n —2) . 5uy —
R S |
+b- 153 a ot - 4 0N (1)
R

This is the binomial formula. It'holds when 7 is a positive
integer, as will be proved in séetion 79, and under certain
restrictions, for other values'of .

Other properties of the ia*ipansion to be noted are:

V. The sum q{m exponents of a and b is n.
VI There afe'n"2 1 terms.
VII. The coefficients are symmetric (e.g., the coefficient
of fHe third term from the beginning is the same
a3 ~15ha.t of the third term from the end).

:"\s.
. : EXERCISES X. B
“\ " ’Assuming that the formula, hulds, expand the following
binomials:
1 (z + y)s 2. (a — b, 3. (142t
4, (z — 1), 6. (a 4+ b)”. 6. (¢ + b
7. (@ — b)s. 8. (a — b, 9 (@ + "
Expand and simplify: . :

10. (2:5! - E)“.
3
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SoLUTION,

- ‘yd_ 394 53 _y 342 _EE
_(2:&_5) = (22%)* 4 4(22%) ( 3)+6(2a:) ( 3)

_ys _E‘t.—. 12_3_2 §ﬁ2
+4(2x3)( 3) —l—( 3) = 16x 3 x9y+3:cy

8 s 4 y \
—— —— x' —_— N A
27" Ty O\
'S\
Nore. In problems of this type do not attempt to simplify
before completing the expansion. Insimplifying, alwaysdivide
out factors commeon to numerator and denominaj:ﬁ{ﬂf ,

1. 2r + 3y)° 12, (5a? — 2b). 13, (282 V)L
{ 3
14, (g2 )5, . (1g3 — S8, 1845 + 2 s,
(Bal/? 4 4p%) 15. (3=* — 3y 6:,\ 3 +b3)
17, (@y? — 3208, 18. (0.9z 4+ 0.1y)f.1;,~19. 0.2z + 0.8y)".

Find the first four terms of the i}g]iéwing_expa.nsions:

20, (a + b)s. 21 (z + & 22 (1 + 2%,
23. Expand (z + y — 2% -
SveamsTion,  First (;Qns?’lder {z + ) as a singte quantity.
AN
24. Find, by using the hinomial formula, the value of (0.99).
SucersTioN N0A9 = 1 — 0.01.

xt\m

Find&aﬁéing the binomia. rtormula, the value of

2. (324 28. (1.2)5. 27. (103)%.
28, (099", 29, (1.03)%. 30. (98)5.
31-\”‘(999)3. 32. (998)%. 33. (101)8.

Find, by using the binomial formula, approximate values of
the following:

3. (1.1)", correct to two decimal places.

85, (1.01)5, correct to four decimal places.
36, (0.99)%%, correct to four decimal places.
37 (1.02)™, correct to four decimal places.
38. (1.003)%, ¢orrect to six decimal places.
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77. Pascal's triangle.

The coefficients of the binomial formula can be obtained -
by a clever scheme known as Pascal’s triangle, exhibiled
below. This triangle of numbers, bordered by 1's, can be
formed by adding together any two adjacent numbers in a
given row to obtain the number between them in the row ,
next below. The number 1 at the vertex of the triangle
may be thought of as the expansion of (a + b)? = I thé
second row gives the coeﬁ"ments of {@ + b)!, the thmd row
gives the coefficients of (¢ 4 b)* = &® + 2ab 4— »?, and

50 on. \\

78. The gene:r.hl. term of the binomial formula.
By ”yﬁning (1) of section 76 we may see that the term
of the(binomial formula involving b” is

s\ nin —1{n —2) - tor factors .
QO 1 2.5 a”'y, (1)

which may also be written

n(n“1)(n_2)”'(n—r+1)aﬂ—-—rbr (2)

rt

where the symbol r ), called r factorial, is defined, for r a
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positive integer, as
=t -1 —2)---8-2-1, (3)
For example, 41 =4.3.2.1,

Actually, the term involving b is term number r + 1, \'

since b appears in the second term, »* in the third, b® in the
fourth, and so on. The rth term is O\
A
nin —1y(n — 2) - tor — 1 factors A\

am—r+1br?%§~ N (4)

Either term number 7 4+ 1 {(formula (1) ox {2)) or term
number r {4) may be called the general térm of the expan-
sion of (@ 4+ B)™ x\

1-2-3.-- (0 —1)

EXERCISES. x.c
1 Find the 4th term of {22 :-iy) i,
Sovurion. The 41;Ia.§erm will involve the 3rd power of
—3y; it is \\
10- 98

Gy 02— = 2408

A
2. Find the®th term of (x + »)'*.
3. Find the 5th term of (327 + 2.
4. Findithe 7th term of (2* — 2"
5. Find the 8th term of (5aV/? — 3b%)%.
"6, Find the next to the Jast term of (722 — ¥
7. Tind the middle term of (3a* + 45

. ~ 12
8. Find the middle term of (2/23 + ‘;—?) -
9 Find the term involving b° in (@ — B)™.
i0, FTnd the term involving a® in {a@ — b}%
1L Pind the term involving 4* in. (32* — 2y°)".
12. Find the term involving % in (22* — 3y%)".
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13. Find the term involving 2% in (z + y — )1
14. Find the term involving b%® in (¢ + b2 + ¢%)3,
15. The middle term of (x? + 2y)* is 1120251, Find ».

79. The binomial theorem for positive integral exponents.

We shall now prove that the binomial formula holds
when fhe exponent n is a positive whole number. This ig,
called the binomial theorem for positive integral exponen 7%
The proof will be effected by the process of mathema’tmai

induction, explained earlier in the chapter. \ O
Part 1. The formula is true for certain valuesghin, viz,
n =1, 2, 3, 4, ag has alrcady been seen. LV

Part I1. If it is irue for n = k, if 48 trgefor n =k + 1.
Agsume that it is true for n = k. Th.el%h;

(@ + B = ¢ + ka*b + - Ot

kw_n @—¢+)

k—r-{—lb’r—l
1. (.r )
t.egm number ¢ {= ;)
k(khﬁ (k—r—f—l) A
g ... 4+ bR
—+ \\ o a7y + +
.. term numb;r‘*: 1= T}
"\.:

Multiply\pr‘ch sides by a + b:
(a _I_'&. }cJ—l

~ &H+m%+ ke — 1) - @_T+1)FMH
Q~ 1-2.

()
BE—1) -k —r+2) oy
12 (r = 1)

6Ty}

b ath

+...+bk+1_
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The coefficients of a*7+b" in the terms al.; and b7,
combine as follows:

Bk — 1) - [?1,—?‘—1-2)(1”—?"—[—1)
1:2---(r—1)r
Bk —1) e (E—r +2)
{r —1) £\
= ok 1.]2)”_ ((:6# 1?')+ 2) k—7r+1 +.r)\'
(k+1)k(k—1) (Iﬂ—r+2)
- 1.2

Therefore, '"f:'\\.
(@ + b)Y = g* + (b + 1)a*b + -
(‘{’ + 1)? 5 (k — 7+ 2) k—'r+1br

which is precisely what we shou}d get by substituting & + 1
for % in the binomial formula.

That is, if the formulasis “true for any value = = k, 1t 18
true for the next Value\n =%+ 1. Butby Part I it is
true for n = 1, 2, &\\4 ‘and consequently must be true for
n =56, )

Therefore Wi e\may write, for any positive whole number 7,

> nln—1) o
(U»-i-b)\ V&t 4 nat 1b+———— a™b* - -

. pEH

...;.:;ﬂ(n “D ot D) g )

':." ‘
\80 The binomial series.

If in the binomial formula we set a = 1,b = %, we obtain

R L S R

+n(n_1)..r.'(n—-f+1)xr+_”‘ (1)
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If » is a positive whole number, this expansion will termi-
nate with z*; otherwise it will continue indefinitely, in
which ease it is called the binomial series. It can be shown
that if 2 is numerically less than 1 (—1 < 2 < 1), formula
(1) holds for any real value of », in the sense that as we
include more and more terms on the right, we get closer and
closer to the value on the left, (See Chapter XX.)

L\
Example 1. o
{a) Find the first four terms of (1) when n = —2 (b) Sub-
stitute © = § and evaluate. .\\’
SoLUTION. N4
oY

—2(=3) 2(—3)(—4)

=] —
(@) (14) 1—2x+ 1.2 + 12,5

=1-—2s4 322 — 4:53:1----
1.8V 1 5

b 1=2.-03. . = =
(b 2-{—1&46480625

B

o

. (N2 5y~ 4\ 16
The true value is ( ’»vy = (— = (—) = — = (.64.
]L\‘t 3 5) "2

Example 2 <

Find th&squa,re root of 1.2 by using the first three terms of the
bm0m1 ¥pansion.

) ‘Qéi}unon.
mJ

NV ViZ=a4o02m
.1_(_1)
L1 A
=142 (0.
.+2(02)+ 3

=1+4+01—0005+-.-
= 1.095,

022+ +«-

This is correct to three decimal places.
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Any binomial (¢ + b)*, in which a # b, can be expanded.
Suppose, for definiteness, that ¢ is numerically greater
than b, ‘Then

(@ + b)) = [a (1 + E)T = a"'(l -+ g)n

N

where b/g is numerically less than 1. The last binomial
can be expanded by (1). L\
A\
Example 3. P o
Find the square root of 23 by using the bmorma.l fc'{mula
SoruTIoN. )
2\
V23 = (25 — 212 = [ (1 — ;)] §~= 5(1 = 0.08)42

5[1 + = (—0.08) +%—-—( 0.08)2 4+ <
51 — 004 - 00@8 -0 d) = 5(0.9502) = 4.796
which is gorrect to tﬁr\ée “decimal places.

I

SOT Exercises x. D
Fin@i@%ﬁrst four terms in the expansion of
L (1 49 2 (1 4+ 2)2 3. (1 + 2V
L (s gz, 5. (14 )72 8. (14 2z~
ATCH - 2y, 8. (1 + z)Vt 9. 1 + )%
N0 (1 4 )2, 11 (1 + 2)% 12, (1 — 2™

Find approximations o the square roots of the following
numbers by using three terms of the binomial series:

13, 1.08. 14, 1.02. 15. 0.99.
18. 108, 17, 98. 18. 27.
T 19 24, 20. 10. 21. 50.

22. 35, 23. 32. 24. 60.
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Find appmximati'ons to the cube roots of the following
numbets by using three terms of the binomial series:

25, 1.06. 26, 0.99. 27. 1003.
28, 999, 29. 10. 30. 7.
31, 28, ) 32. 25, 33. 128,
Find approximations to the fifth roots of the following

numbers by using three terms of the binomial series: XN

34, 1.02. 85, 0.95. 36. 35. &y
i\
s \/
;2} D
O
N\
N
€Y
o
Q\ v
oY
RS
w‘\\x
‘\sgu
N\
¢.& <\}'
O\
A\
4,
{\‘}
a0
Nl
N
NS



CHAPTER Xl

Progressions

P \: N
81. Arithmetic progression. X O

An arithmetic progression is a sequence of quaﬁtltles,
called terms, each of which (after the first) eaus’be obtained
from the preceding by adding to it a fixed\quantity called
the common difference. Thus, the set afaiumbers 2, 5, 8,
11, for example, is an arithmetic progréssion. Here the
common difference is 5 — 2 =8 8 =11 —8 =3,

82. The nth term of an arithmgti?i;progression.
Let us denote the arit-hmeﬁé progression by

GLR‘st gy * v~ 5 _One

If the common dlfférence is represented by d, we have, by
definition, x w

g = al"\‘N; ay = 4y + Qd, ay = I + Sdi ¢

. \w'
and in{general, for the nth term,
o
\,..\ » a, = a3 + n — 1)d. (1)

Example.
Find the 10th term of the arithmetic progression 2, 5 8,11,
SoLUTION, Gro =24+ 9-3 =2+ 27 =20,

83. The sum of an arithmetic progression.

Let us denote the sum of n terms of an arithmetic progres-
sion by 8,. To derive a formula for the sum, we write it
157
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first in nataral order and then in reverse order:

Sn=a1+(a1+d)+(al+2d)+--'+(an—-d-)+am
Sn=an+(an'_d)+(an_2d)+"'+(al+d)+a1-

Adding, we get

28?1 = (al +a'ﬂ) + (al + an) + (01 + an) + \ \‘
+ (@1 +a,) + (a1 +a,) = ?1(0:1 + )
(since there are n terms). Therefore, /jf 3
A\
n \4 1)
“gl@ta) O (
\\

If in (1) we substfoute tn, = a1 1 — 1)d, as given by
equation (1) of the precechnfr séction, we obtain another
useful expression for the sum, na:melv

S

S, %‘12“1 + (0 ~ 1)d]. @)

O
Example 1. A\
Find the su{l{'g;f 10 terms of the arithmetic progression 2, 5,
8, “n, "::\.“:
s{:@i{o}. Substitute @10 = 29 (found above) in (1)
A\ i0
o N S = — =
~O 10 =g 2+ 29

3

Example 2.

Find the sum of 9 terms of the arithmetio progression 25, 21,
17, - - -,

SOLUTION. @ =25, d = —4, n = 9. Substitute in 2):

9
Sy = 5[2 25 4 8(~4)] = 81.
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84. Avithmetic means.

The terms between any two given terms of an arithmetic
progression are called arithmetic means between the given
terms,

Example.

Insert 3 arithmetic means between 7 and 13. .
oA\
SoLvrion. a, =T, 6s = 13 (n = 5, since the progreﬁsiomi\s'

composed of the 3 means and the first and last terms). qu@tfﬁute
in formula {1) of section 82: >\
S
18 = 7444, d= 13 \%
. oV
The progression is 7, 8%, 10, 114, 13. \

EXERCISES XI(A"

Find g, and S, for the aﬂthpjigt;ié progressions in exercises
1-10: R\

13,813, .-+ (n = 10). o~ 2
8.2,11,20, - - (n = 2B\ 4.
5 11,8, 5, -+« (n =Q2) 6. 4,18,22,: - (n=50).
7,05, 1.1, 1.7, - - Mo = 100). 8. 2,9, 16, -+~ (n = 250).
%% 5% (28 10. 5, 1 75, -+ (0= 31).
1L, Givenax =3d = 23,0, = 33; findnand S..

12, Givenain=%,d = &, a, = 12; find » and S;.

13. Givenny = 7, as = 17; find & and Se.

14, Insrt seven arithmetic means between 6 and 12.

15, (Tnsert eight arithmetic means between 13 and 25..

\1\6:‘ Given ayy = 47, d = 4; find ¢y and S0

17, Given ay = 200, d = &; find a@; and Su.

18, Given ¢, = 13, S = 171; find d and as.

19. Given a; = 30, 8 = 140; find d and az.

20, Given ayp = 23, 81y = 30; find ¢, and d.

2L Givend = 6, Sy = 76; find e, and as.

22, Given d = 1%, Sn = 176, find o1 and @1

2. Givenay = 3,d = 7, 8, = 279; find n and Gy

2. Given a; = 138, d = —4, S, = 1392; find n and @..

39, 29, 26, - + - (n = 10).
1%, 4, 65, ++ w(n = 13).
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25, Given a, = 214, d = —1%, S, = 124%; find » and .
28, Given a, = 8, g, = 60, S, = 165; find » and d.

27, Given a; = 7, 6. = 39, 8, = 299; find » and 4.

28. Given a, = 152, d = 5%, 8, = 2150; find » and a,.
29, Given as = 26, an, = 110; find a;.

30. Given gz = 232, 0y = 250; find ass.

31, Given as = 25, 85 = 116; find a4,. Q

32. Determine z so that #, Lz + 7, 3z — 1 will be an arithmetic
progression. A\

33. Determine & so that 22, 3¢ 4 1, 22 4+ 2 will be an arithmetic
progression. N

34. Derive a formula for the sum of the first » in: Péerfs
- 88, Derive a formula for the sum of the first 2. %7eh integers.
38, Derive a formula for the sum of the ﬂrQKn odd integers.
N

Derive formulas for x\ -
37. ay and §, in terms of d, n, @, | \J
38. d and @, in terms of a4, n, Sl
3% 1 and d in terms of n, a8

40. ¢; and a, in terms of d, w8,

41. 4 and n in terms of ¢4, ., S,.

42. n and 8, in terms ot ay, d, a,,.

43. d in terms of aitn, a..

44. Prove formula\(2) of section 83 by mathematical induction.

A
85. Geometric progression.
."\‘~
A g%i\m’etric Progression is a sequence of quantities, called
terms, each of which (after the first) can be obtained from
e preceding by multiplying # by a fixed quantity called
_the common ratio. The quantities 2, 6, 18, 54, for cxample,

form a geometric progression. Here the comnmon ratio is
5 _, %B_ = 564 __ 3
P =18 Y% 9.

86. The nth term of a geometric progression.
If the geometric progression is

Q1, Gz, dg, + + », Ay
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and the common ratio is 7, it follows fmm the definition
that

s = 047, g = a1r2, gy = a17‘3, ey,

and in general,

\../

'\ s
Find the 6th term of the geometric progression 2, 6 18 {) .

Example.

SOLUTION. The ratio is £ or 2 = 3. Therefare,

N
s =2-3t =162 (¢

.{‘ v
81. The sum of a geometric progress:on

Denocting the sum of n terms’oi a geometric progression
by 8,, wec write RN\

8o =a; + ayr +, c@?@ b ar P a1
L\

Multlply by r: LD

..\,)

T.S = aﬂ\“" al?"a + &1?'3 + e + alfr"_l -+ aﬂ‘“. (2)
Subtrac(g@ from (2):

N\ “\' ) T‘Sﬂ - Sn = al?m — a1,
w r — 1S, = ar (™ — 1).
Provided r 5 1,
_ Tﬂ —1 ' (3)
Sn = a4 y —1 .

Ifris numerically less than 1, it is convenient to write
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(3) in the form

1—-
S, =a . 4
L @
EXERCISE
N
Show that
4 “\ .
_T8n G G — 78, R
=TT TS O~ ®
O
Example. ,\\
Find the sum of 5 terms of the geometrio progression 2, 6,
18, e ‘x:\\';
SowvTiow. By (3), R\
35 _ 4 )
=2 —-—’;1' = 242
- S

88. Geometric means. “\

The terms between{ﬁ*ny two given terms of a geometric

progression are e%{éd’ geometric means between the given
terms.

L )
~~,~..¢

Exampfe >
nso\t"ti geometrlc means between 16 and 81,
SQXUTION ay = 16, g5 = 81. Substitute in the formula

%—halrﬂ—-l

~\

™ BL=16r, p=Cf, ;o gl
B 8 7T T2

(r = =44, also, but only real values will he considered.) There
are two progressions:

16, 24, 36, 54, 81; 16, —24, 36, — 54, 8L.
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EXERCISES X1 B

Find @, and 8, for the following geometric progressions:

1, 4,12, 36, - - - (n = 6). 2. 5,10, 20, -+« (n = 10).

3,6 —24 96 - (n=28). 4 324872 ...(n=71).

B. 136, 312, 624, - - - (n = 11). 6. —17,34, —68,.--(n = 12).

7.2, % 5, - (n =5 8. 0.7,0.07,0.007, - (n=12). . &\
9, 1,1.03 (103 «--(n= 5).

0.3 =2, g - (n=10). 1L 2,2V3,6,- - (n=14). ™ )

1 2
12.3,3v2,6, -« (n = 19). 13, 2,—\/—5,—-;,---“(@‘:‘;,_6).

14,2+ V3 2 8 —4v3 ... (n = b). S
16. Given g, = 8, r = 1:},—, = 402, find 7 and Sy
18, Given @, = 367, r = 4, @, = §; find nandﬂ,,.

17, Given a, = 80, a; = 405; find r and S \

Nore, Consider only real values § i) fhese exXercises.

18. Given a, = 9000, a, = 2.88; ﬁnd $and S..

19, Insert 3 geometric means betw ech 5 and 12,005.
20. Insert 4 geometric means bet\\ecn 135 and —17%.
21, Given g5 = 625, r = 5 find ¢ and S,

22, Given a; = 2, r = 2;{hd ¢, and S-.

23, Givenr = 3, Sy = 3&48 find a; and ds.

24 Givenr = £, 8. 5902, find ¢, and as.

26, Given a; = 40,% = 0.2, 8. = 49 984; find n and 2.
2. Given a, —~"§ 7= —% 8, =1%; find nand g,
. Gnena\—' B, a, = 1536, = 2 ﬂndnandS

28, Gnen}; =8r="74d, = 588245 find =z and S,.
29 Giverl a, = 162, a, = 512, 8, = 1562; findrand n.

Gi\«ena] =6, a, = —162, S, = —120; findrandn.
31\ Givenr = 4, an — 13,312, 8, = 17,732; find a; and .
32 Givenr = —§¢, q, = 810, 8, = 550 find @, and #.

33, Given a; = 7 Sa = 301; find r and ¢a.
34, Given ag = 486, gy = 2250; find au.
35, Given as = 12, gy = 108; find da.

38, Given a; = 3, a1e = 10; find ass.

SveessTion. Find 2.
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37. Determine z so that = — 7, z + 5, 22 will be a goometrie
progression.

38. Determine z 50 that 10 — &, z <-4, 42 + 1 will be a geo-
metric progression,

Derive formulas for

39. r and 8, in terms of a4, a,, n.
40. a, and a, in terms of 7, 5, 8,.

41. g, and 8, in terms of 7, 0, @,. R\,
42, a, in terms of ay, 7, Sa. O

43. a;:in terms of 1, a., S,. N

44, rin terms of @y, @, S.. 7

45. Prove formuls (3) of section 87 by ma’shcmati’i?a‘;t induction,
89. Infinite geometric progression. Y

Consider a line segment 1 unit ‘in'\iengt-h. (Fig, 21.}
Suppose that a point starts at onecenid of the segment and
moves halfway to the other endabhen half of the remaining
distance, then half of the distamee still remaining, and so on.
The total distance traversed by the peint will approach
nearer and nearer to 1.\But the distances through Whjc};

— : ~—+= the point moves are the terms o
9 % 3‘7\\2? the geometric progression, %, 1) %

Fra. 2L\ - ++, whose ratiois . Thus, the
sum of this prégression, as we take more and more lerms,
approaches)ttie value 1; that is, it can be made to differ
from L\Iigz\w amount as small as we please.

A geBmetric progression in which the number of terms
ineteases without limit is ealled an infinite geometric pro-
" gression or infinite geometric series. If the ratio is numeri-
Cally less than 1, the sum of n terms of the progression, a8
n increases without limit, approaches a perfectly definite
value, called the limit, or sum, of the progression. (Observe
that it is not a “ sum ” in the ordinary sense.) '

For, from (4) of section 87, we sec that

Spmg T @, (1)

L=r 1—7r 1-7¢
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Now if the ratio js numerically less than 1 (|r] < 1)*
the numerical value of #* decreases as n increases, and by
taking n sufficiently large we can make | [, and conse-
quently | a7/ (1 — 1) |, as small as we please. That is, as
# increascs without Limif, the last fraction in {1) shrinks
toward zero in value, and the sum of n terms of the progres-

; ~
sion approaches thevalue a;/(1 — r). Insymbols,we write .
AN
a
Sw = — 2)
l1—-71 ‘.‘}‘
Example. m{ 4,

Find the limit of the infinite geometric progregs}on 2,5% -
I

| AL
SoLuTIoN, ay=2,r = 3" ‘\
2\
Sem = =3
1—7 1'___1_
NN\ 3

o

MY
S EXERCISES X1, €

Find the © S].:,lilIlS 7 of the following infinite geometric
progressions NG

L2200 24,33
3. 3’ %’ 171\2\}4:._ 4, 3, ‘—%r 'i%} -
B —9gy 24, —6, - - -, 8. 81, 54, 36, -

N /2

N\ ava
{‘zf’\/ggl,"‘- 8. 3, 5 » B

. V6

9, 8\/3,10,"\2/5’..., 10. V6, —‘/5,—3"‘:‘
1.2,3 V57— 3V5, .-
12237 - 4v3, 26 — 15V3, -+«
13. 04, 0.04, 0,004, - - - 14. 4, 0.04, 0.0004, - - -

* The symbol | » |, read “absolute value of r,” megns the value of r without
egrd to sigo; eg., (2} =1 —2| = 2.
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16. 0.4, —0.04, 0.004, - --. 18, 0.7, 0.07, 0.007, - -
17, 1, (1.02), (1.02)7, - - -
18, (1.03)%, (1.03)2, (1.03)"%, - - -.

90. Repeating decimals.
A repeating decimal is an infinite geometric progression..
Thus, 0.444 . . . (sometimes written 0.4) is the progress\ion'
)

0.4 + 0.04 + 0.004 + 0.0004 + - -, O

in which e, = 0.4, 7 = 0.1. Likewise, the repea’itgng:dccimal
0.235,235,235 . - - (written 0.235) is the pro@g%ssion

0.235 + 0.000,235 - 0.000,000,235 + - - -,
- N

in which a; = 0.235, r = 0.001. “

"

Example 1. o )
"Find the limiting value of\0.444 - - -
SovuTION. img
\s..'
S"\ 2 0.4 __O._ZL_“%‘
O 1—-7r 1-01 09 9

AN¥/

"This may, bé checked by dividing 4 by 9.

'“Z:Exampfe 2,
#\\ Find the limiting value of 0,743,
Sorvrion. 0.743 = 0.7 + 0.043 4 0.00043 + - - -. ,
This is composed of 0.7 and a geometric progression in which
a1 = 0.043, r = 0.01. Thus,
0.043 _ 1 9_9_4§
1—001 10 099

0718 = L
hm0.743—10+
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Although the formula for S,, can be used to find the limit~
ing value of a repeating decimal, perhaps the best method
is that used in developing the formula for the sum of a

geometric progression.
Example 3.
Find the limiting value of 0.444 - -,

N

SoruvTiox. Let . )
= 0444 L@
Multiply by 10: 100 = 4.444 - - -, )
@ - Q) 9y = 4, X
4 W
g = -
9 \
O
Example 4. N
Find the limiting value of 0.743. O
SoLurion, Let z = 0.7434%’-:-"-. 3
Multiply by 100: 100z = 74.34343 . - .. 4
@~ @3) 99z = 73.6,"
@36 736 368,
B Ey - = o =

K 0 T 990 " 495
) EXERCISES XI. D

Find th,@ijﬁiting values of thefollowing repeating decimals:

L0886, 2 0.555- - 3. 0.777 - -~
£ 08\ 5. 0.3232 - .. 6. 0.45

T I8, 8, 0.3444 .- -. 9, 0.24343 - -,
1. 9123, 11, 012323 .-+ 12, 032121 -~
1370140857, 14, 0.428571. 16. 0.1234.

16. 0909 ..., 17, 0.9090 - - - 18. 0.635.

. Harmonic progiession.
i}hannonic progression is a sequence of terms whose
recipl‘ﬂcals are in arithmetic progression. For exarflple,
» 4, % % is a harmonic progression, since 2, 4, 6, 8 is an
arthmetic progyession.
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Example 1.

Find the 7th term of the harmonic progression &, £, ~1, -+,

¥

SovvrioN. Form the corresponding arithmetic progression:
4, % -1,

d = —2.5,
a7=a1—[—6d:4—|—6(—2.5) = —11. ’s\.
1 R\
Take reciprocal: — a N\ 3

. AV

The terms of a harmonic progression bhé{ivcen any two
given terms are called harmonic means..
RS

N

Insert 4 harmonic means between Yand .

Example 2.

Sowvrion. In the corresppﬁ&ihg arithmetic progression,

N 3

a2,  ag=17.
172+ 5, d=3.
A
Arithmetic progression: 2, 5, 8, 11, 14, 17.
Harmonic progtession: 3, %, %, o 71 o1
The;c;;\*tfa"ho simple method of finding the sum of 2
harri;t{;gie’ progression.

a3
NS

e EXERCISES XI. E

”\s i .
\/ 1. Find the 20th term of the progression 1,2, 4, - - -
2. Find the 8th term of the progression 24, 12, 8, -+ -
3. Find the 9th term of the progression 2, 2, &5, -+ -
4, Find the 10th term of the progression 1, —2, —%, =°
0. Insert 3 harmonic means between % and .
6. Insert 5 harmonie means between 3 and 12
7. Insert 4 harmonie means hetween 10 and 60.
8. The 4th term of a harmonic progression is 15, the 10th term
is 6. Find the 12th term.
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9, The 4th term of a harmonic progression is 12, the 8th term is
g What is the 16th term?

10, Determine x so that z, # -+ 5, 2z will be 8 harmonic progres-
SIOIL.

1. Determine z so that  + 1, ¢ — 1, 2¢ — 7 will be a harmonic
progression.

12, Derive a formula for the harmonic mean of two numbers a
and b, '

MISCELLANEOUS EXERCISES XI. F O
1. Find a1, and Sy for the progression 16, 24, 32, - - -4
2, Find a; and S for the progression 16, 24, 36, -« -:}\
3. Find g5 and S; for the progression 21, 4#, 255K
4. Find as and Ss for the progression 5, 8%, 123~ -
5. Find a100 and Syo for the progression 178145, 12, - - -.
6. Find a7 and S; for the progression 3,6, —15, - - -.
1. Find a; and Sy for the progression8,.—6, 12, - - -
8. Find the next term of the progeéssion 6, 8, 12, - - -
9. Find a, for the progression by :%L‘,B, CEEN

10, Insert (4) three arithmetieundans, (b) three geometric means,
{c) thrce harmonie meafs) between 8§ and 24.

M. A particle sliding -éfm’ 5 plane inclined at a certain angle
travels 3 feet during the first sccond.  In any second after the
first it slides & #get Tarther than it did in the previous second.
(a) How far di}gs it elide in the 8th second?  (b) How far does
it slide in-&econds? (c) How long will it take to slide 300
foet? N\

12. How\Imany numbers are there in the first 25 lines of Pascal’s
frigngle?  (See section 77.)

- Wswimmer trained by swimming 55 yards on the first day and,
on each day after the first, twice as far as he did on the pre-
coding day.  On what day did he swim a mile?

4. A colony of bacteria is increaging at the rate of 50 per cent per
hour, If thore were originally 64,000 bacteria in the colony
how many will there be at the end of 5 hours?

15. A rubber ball is dropped from a height of 27 feet. Bach time
that it hits the ground it bounces to 2 height § of that from
Wwhich it fell. (a) Find the distance that it travels up to the
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1s.

17.

18,

19.

22,

time that it hits the ground for the 5th ime. (b) Find the
distance that it fravels before coming to rest,

In a potato race 25 potatoes are placed on the ground 6 feet
apartin a straight row. In line with the potatoes, and 25 {eet
from the first one, is placed & basket. A runner, starfing
from the basket, picks up the potatoes and carries them, one at
a time, to the basket.  Find the total distance that he runs, £\
For a cistern 6 feot in diameter filled with water, the amout
of work done in pumping out, the water is 882 fout-po;lﬁds\for
the first, foot of depth, 2646 foot-pounds for the, dext foot,
4410 for the third foot, and so on. (That is, fow any foot
after the first the work done is 1764 foot-pogxids more than
for the preceding foot.) If the well is 20 fretydeep how much
work is done in pumping out al} of the waber?

When & vertical rectangular plate Lﬂj.su\bmerged in water so
that the upper edge is in the surfaceof the water, the pressure
on the first foot of depth is 40w pounds, where I is the horizon-
tal dimension, in feet, of thegplate and w is the weight of 1
cubic foot of water (spproximiately 62.4 pounds). The pres-
sure on any foot after theﬁﬁfst is lw pounds more than that on
the preceding foot. Find the pressure on such a plate which
measures 5 feet hovigontally and 10 feet, vertically.

A 20-gallon contdiner is filled with pure acid, Tive gallons
are drawn off replaced with water; then 5 gallons of the
mixture are\drawn off and replaced with water, and so on
until 5 drgwings and 5 replacements have been made, Find
the ariuint of acid in the final mixture,

X A‘({I‘iﬂing company contracts o drill 8 well at a cost of $1.50
. forthe first foot, $2.25 for the second foot, $3.00 for the third
“foot, and so on.  How deep 2 well can be drilled for $23107

- A sheet, of paper is 0.001 jnch tk ek, It is eyt in half and one

part is placed on the other, The two pieces are again eut i'n
half and the parts again stacked together. If this process is
performed 15 times how thick will the stack he?

Ten 3-pound weights are placed 2 inches apart on a lever
(whose weight can be neglected), the first weight being
6 inches from the fulerum, How far from the fulcrum nust 2

30-pound weight be placed, on the other arm, of the lever, t0
effect o balance?
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23

24

25,

28,

The tickets in a lottery arc numbered 1, 2, 3, and soon. The
price of a ticket is the number of cents equal o the number
on the ticket. There are 10 prizes, the pay-off being as
follows: The first number drawn pays 25 cents and each
numher after the first pays twice as much as the one which
precedes it.  How many tickets must be sold in order that
there will be no loss to the person conducting the lottery?

The side of a square is 16 inches long. A second square is /A
formed by joining, in the proper order, the midpoints of the,”

sides of the first square. A third square is formed by joining
the midpoints of the sides of the second square, and ‘o jon.
Find the area of the tenth square. vV

A square is inscribed in a cirele of radius 6 inches) A circle
is inseribed in the square, another circle in thig gecond square,
and soon, Find the sum of the areas of @311 of the circles,
(b} all of the squares. \®

» A regular hexagon is inseribed in a cirele of radius 31 inches.

Asecond sircle is inscribed in the héagon, another hexagon in
this seeond circle, and so on, ~Rihd the sum of the areas of
() all of the circles, (b) all of $hé hexagons.

. Two lines meet a$ 2 cortainangle. From a point on the first

line, 6 inches from h€ point of meeting, a perpendicular is
dropped to the secotid fine. From the foot of the perpendicu-
lar anothér perpéndicular is dropped back to the first line,
then another pefpendicular is dropped to the second line, and
soon.  Fingythe sum of the lengths of all of the perpendicn-
lars Wh&é fhe angle ut which the given lines meet is (a) 45°%
(b} 608, () 30°.

The$tim of three numbers in arithmetic progression is 60. If

~the' numbers are increased by 2, 1, and 28, respectively, the

29,

fiew numbers will be in geometric progression. Find the
arithmetic progression.

SueeEsTioN. Let the arithmetic progression be 2 —d, =,
z -+ d.

The sum of four numbers in arithmetic progression is 28, the
sum of their squares is 276. Find the numbers.

- The coefficients of the 5th, 6th, and 7th terms in the expansion

of (& + b~ are in arithmetic progression. Find 7.

N
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31. Given two unequal positive numbers « and 4. Denote their
arithmetic, geometric, and harmonic means by 4, G, f,
respectively. Prove that (a) AH=G2 (b) 4 >G> H.

SvacestioN. (Vg — \/5)2 > 0.

32. If #% ¢ ¢2, form an arithmetic progression, prove that y + @
z + %, ¢ + y form a harmoniec progrossion. \

33. The geometric and harmonic means of two numbers Q‘e,,'\“s&
spectively, 9 and 5.4.  Find the numbers.

.

RS
L "4
N
N
&/
\ \
y, . ¥
O
8\
s:\,‘
N
AN
Q
&N\
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b\
N\
OO
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a4
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CHAPTER XiI

Complex Numbers

N
7 AN
o\
N

92, Imaginary and complex numbers.

In scetion 44, of which the present chapter is a?re%*iew
and & continuation, we introduced the Imaginary unit 7
having the property i* = —1, assuming that this new
number oheys all the laws of addition @qﬁ\ﬁlﬂtiplication
that hold for real numbers. Since® =28 = —i, ¢ = ()2
=L@ =¢.{=14,... it is seen théb the successive inte-
gral powers of 7 run through the cyele 7, —1, —14, 1.

A number of the form ¢ 4 bdyin which ¢ and b are real
numbers, is called a complefhumber. The number @ is
called the real part, and<®y is called the imaginary part
of the complex numbel;,{??})eing the coefficient of the imagi-
bary part. If b = B the complex number is called an
imaginary numbef> If b = 0 and a = 0, the complex
humber reduce#\$6 the form b:, which is called a pure
l'nlagmary nu\x;}ﬁ'er. If & = 0, the complex number reduces
to the reahpdmber .

ThuS,}.:complex numbers include real numbers and magi-
aryRuirabers as special cases.

N\ ?:‘xampfes.
Real numpers; -3, 7 — V3, V5.

Imaginary mumbers: 3 — %, 3 — iv3, V3 + V23, 3i, —3,
i3, v,

Piiye BRagingry numbers: M, —34, ﬁ‘/g; vV —8.

All of these examples are complex numbers.

The two complex numbers ¢ - bi and ¢ — bi, which differ
4T
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only in the signs of their Imaginary parts, are called
conjugate complex numbers. Either is said to be the eon-
jugate of the other.

Two complex numbers, ¢ + bt and ¢ + di, are equal if
and only if their real parts are equal and their imaginary -
parts are equal. In particular, @ 4+ b = 0 if and only if
a=0andb =0,

N

O\
93. Addition and subfraction of complex numbets)

By definition, addition or subiraction of c@fﬁj_:;lcx num-
bers will be effected by adding or subfrakfing their real
parts to obtain the real part, of their sunpor difference, and
by adding or subtracting their imaginary parts to obfain
the imaginary part of their sum or/difference. Thus,

(@ + 8) + (c + di) s——*(a-{« &) + @+ a),
(@ +b) — (¢ + di\= (@ ~¢) + (b — ).

Example 1. A
Add 2 + 3i and 43" 74,
L\
SOLU’I‘ION.N. 21 5;
& 4-7
7. Sum = 6 — 4.
' M
,fﬁ}ﬂpfe 2.
~\Bubtract 4 — 74 from 2 -+ 2,
SoLuTIioN. 24 3¢
4~ T

Difference = —2 + 105.

94. Multiplication of complex numbers.

By definition, we shall multiply complex numbers accord-
ing to the laws for real numbers, simplifying results by
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making use of the relation ¢ = —1,

(@ -+ bi) (c + di)

Example.

Thus,

ac -+ adi -+ bet + bdi?
{ac — bd) + (ad + be)i.

Multiply 2 + 3¢ by 4 — 7+,

SoLvTioN.
24+ 3
4— 7
84 12¢

— 14i — 2132 ¢
8~ 2 — 21 = 8§ — 2 + 212526 — 2i.

95. Division of complex numbets”

2
\:..\\

\ - 4

N

W

No

*3
N

&

Division of complex numbers can be accomplished by
vwiiting the quotient in ira-\ct-ional form and multiplying
numerator and denoﬂiiﬁﬁ-ml‘ by the conjugate of the
denominator, Thus;;

6+ bt

et dinle+di c—di
\% +di ¢ i

¢ — d*°

"\,. _ lac + bd) + (be — ad)i

o

O

ac 4 bd  be — ad .

6‘2+d2

¢ + d?

Example.

Divide 2 + 3¢ by 4 — 74,

e - @2 v

(¢ + di = 0).

AN/ ' .
@b ¢ — di-_ ac — adi + boi — bdi”
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SoLurion,

2430 4+7/ 84 260 + 212
4 -7 447 16 — 4942

_ 8426021 13 +26 Lrgr
T Ti6+49 7 65 T T 5"
N
EXERCISES XM, A L\

Perform the indicated operations and reduce 1;}16~¥esult to
the form o + &i: N

B 45 + (7 + 49). 2 (4 — &) -'|w{g'é~; 30).

. (5465 — (8 4 34). 4, 3+ TG — ).

« 3 — (13 — 74). 8 G599 — G+ 3.
w (530 (2 — 5) + (—T 4k

1
3
B (=5 8) + (3~ 10i). 6 (9 —gp— (=3 + 4i),
7
9
0

b (=6 -+ 20) — (3 — 8) — (=1 ¥ 75).

. @+ 2V2-9) + (5 — TVZ™).

12, 3V3 — 5V7-1) — (@B + V7.4,
13. 5+ V-2 — 2 +3V_2).

W @—v-3) — @~ VI,

16. (3 + 5)(7 i) 16, (4 — 8)(6 — 37).

17, (5 + 69) (8% 39). 18. 3 4 T}(5 — %),

19, (-5 183 — 107). 20, (9 — 49)(—3 + 40).

2L G a0l + 8. 22, (0.2 — 0.32)(0.5 + 0.69).
23. (5¢h8i(2 — 5i)(—7 +9).

24, A6 + 2)(3 — 8i)(—1 -+ 75).

255 (3 4+ 2v2. (5 — TV2.4).

26, (3V3— 5VT . ) (aVE o 2VT L),

N o1 54 VIR + 3v =g,
28. (2~ V-3)(3 - V-3
29. (6 — 50)% 80. (2 - 34)%.
81 (34 50) + (7 + 49). 32, (4 — 8) + (8 — 37).
33. (51 6i) + (8 + 30). 34, 347+ (3 -19).
36. (—5+8&) + (3 — 10i). 36, (9 — 49) =~ (—3 + 4.
SLE-W+G+4§. 38. (0.2 — 0.37) + (0.5 + 0.60).
3. B+2V2.4) + (5~ TV2. ).
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0, 3VE — 5VT ) + V53 4 2VT 1),
i G+ V=2 = 243V D).
2.2-V-3+3-V-2),

43, (6 + 5i) + (6 — 51). 44, 7 + (3 4 20).
45(5+4?:)(7—¢7)- 9-T7
) 2+ 3 "6+ (B — 20)
8 +50)2~4) (5 —3)6+7) O\
4. (7 — 32+ 34) 48. (5 + 39)(6 — 70) O

49. Show that the sum of two eonjugatc imaginary numperg fs a
real number and that their difference is a pure ipadgmary
N

number, o -
§0. Show that the produet of two conjugate imaginge’y numbers is
real and positive, N '
;’:\ &
96. Graphic representation of compléx numbers.
The complex number 2 + y’g’:if"' g:‘ 2 Ploryi)
may be represented by the poind &
P whose coordinates are (2)9). ut
(See Fig. 22.) When _gomplex % Y

numbers are so represented, the
T-axis is called the. %xis of real Xyt g 1 ¢ 5 & X
numbers and theyyaxis the axis |
of imaginary Qﬁmbers. All real
numbers ligndnt the axis of real
mumbers il pure imaginary numbers lie on the axis of
Imaginary numbers.

/The) complex number z + yi may also be represented by
thedine 0P going from the origin to the point P. Such a
line, having length and direetion, is called a vector. Vec-
bors are important in physics and mechanics.

-2

Y
Fie. 22

97. Graphic addition and subtraction of complex num-
ers,

Let the complex numbers & - bt and ¢ -+ di_be_ repre-

Sented by the points M and N respectively, and their sum,
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(@ +¢) + (b + d)7, by the point P.  (See Fig.23.) Draw
OM, ON, MP, NP; drop NQ, MR, PS perpendicular to
O0X; and draw M T perpendicular to PS. Then MT = RS
=08—-0R=(@+¢)—a=c=0Q, TP =3P 8T
=(b+d) —b=4d=QN. Therefore the right triangles
MTP and OQN are congruent, and MP = ON. Al
LTPM = /QNO and MP is paraligl
to ON. Quadrilateral OMPN\}B a
parallelogram, since two sides}ﬁ'e both
equal and parallel. N

Thus, to add two dgmplex num-
bers graphically, -0f) geometrically,
complete the parallglogram having as
adjacent sides the' ¥ines drawn from the
-origin to the points representing thedo numbers. The fourth
vertex of this parallelogram wnll bethe point representing the

"

sum of the two numbers.® ANT

If we think of the complex numbers ¢ -+ b7 and ¢ + dé
as represented by the veéetors OM and ON in Fig. 23, the
sum of the numbers il be the vector OP.

To subtract ¢ o 4 from a + b graphically, we may add
a + bt and -c‘—~\ t. Note that the negative of a complex )
number represented by the point P ean be obtained by
exbending\i?@ to a point P’ such that OP and OF’ are equal

Fic. 23

in length{.
\§
EXERCISES XIL B
Y .
N Perform the indicated operations geometrically:

L 7+ 3)(1 + 5). 2. 8+ + (G —4).
3. 5+ 20) + 2+ 5. 4. {(—6 + 37) 4 (@ + 7).
B, (46) + (3 + 2. 8. (30) 4 (—2 + 49).
7. (8 — 9 — (4 4 3). 8, (104 7)) — (3 — 4i).
9 (=7+8) — (13—-2). 10. (10 4+ 5) + (2 + ).

. 8+ 8) + (8 — 33). 12, (8 — 38) + (8 — 30).

rH the origin O and the points M and N lie in the same straight line, the _
pomt P will lie in this straight line and OP will be equal to O + ON.
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13, 84+ 3) — (8 —2). 14 (T4 2) — (13 - 29,
B, (—7+30) + (7 — 12i). 16, (10 + 20) — @ — 100).
. (3420 + (1 +8) + (6 — 30).

SuagesTiox. Combine the first two numbers geometrically
and then combine the rosult with the third number.

18, B+7) + (3 — 20 — (—5+ 5.

19, (10 — 5) — (2 — T — (5 -+ 8i). O\

W (~24+ 30— (A4 7)) 4 (6 + 49, > N

2L. Given the complex numbers 10 — 3¢, 5 24, —3»-'{'- 8i.
Show that tlie same result is obtained by geumetnca,l]y

(a) adding the first and second and then a,ddmg their sum
to the third,

(b} adding the first and third and then\addlng their sum
{0 the second,

(¢) adding the second and third a,nd then adding their sum
to the first. o

CR Y

98. Trigonometric form of Céh‘lplex numbers.*

‘ Let the eomplex nuntber z + ¢ be represented by the
point P in Fig. 24 \Let OP = r, and let the angle XOP

be designated bv A Then

. Y. Plx +y1')
m*rco»\A y =rsin 4, , y
and the c&ﬂple}; number may be ertten o] Am e
x+y1—r(cosA+zsmA) - Tra. 24

}hls last form, which may be conveniently abbrevmted
7 ¢is 4, is called the trigonometric, or polar, form of the num-
ber, Thc angle A is called the amplitude, or argument,
of the number, the length r = Va? + %* is called the mod-
ulus, or absolute value, of the number.

*The remaining scetions of this chapter presuppose & Inowledge of trig-
Onnmetry

-
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Note that tan 4 = y/z. For 4 we usually select the
smallest angle satisfying the relation 0° < A < 360°,

The definition of absolute value of a complex number is
consistent with the definition given for the absolute value
of a real number. (See page 165, footnote.) The absolute

value of x ++ yi, namely Va2 - 32, is also written |2 + yid

O\
EXERCISES Xl ¢+ O *
Reduce to trigonometric form: K "3‘«: “
1 -5+ 5 AV
SoLuTION. 7= W/(_—mgﬂ = 5\\/- ’

ta,nA=~—5.3= -1, A\—‘135°

545 =5VE (cos 135° - 7 sin 135°).

{The student is adwaed %b plot the point as an aid in deter-
mining the angle.)

2. 3 + 4. o)
SoLuTIoN, \\
= V324 42 = 5,

OF
-:t\n'
(yian A =
O

“5

N,

4
5 = 13333,

A = 53.1° (from ’mgonometrw tables).

O 3 -+ 4i = 5 (cos 53.1° + ¢ sin 53.1°).
. 3+ 34, 4. 1+ 4V3, 5. 4 ~ 3i.
6. 4V3+4. 7.5 8. —6.
9 —5-—-5V3.4 10, 15 — 8. i1, —5 4 12
12. 3 - 5. 13. —9i, 4. 7 — i
- 16, —8 + 64, 16, —7 — 243, 17..20 + 213
18. § - 44 19. ~V2 4 V7, 20, 10 — 104,

*Table VIII a% the back of the book may he used in solving these exereises.
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Reduce to rectangular form (i.e. the form a -+ B3):

21, B{cos 30° + ¢ sin 30°). 22. 8(cos 60° 4 ¢ sin 60°).

23. 4{cos 45° + 7 sin 45°). 24, 10(cos 120° 4 4 sin 120°).

25. 3(cos 180° + ¢ &in 180°).  26. 5{cos 225° 4 i sin 225°).

27, 2(cos 210° + ¢ sin 210%). 28, 7(cos 300° 4 ¢ sin 300°).

29, V'2(cos 135° 4 4 sin 135%). 30, V3(cos 240° + i sin 240°).
31, c08(—30%) 4 ¢ sin (—30°). 32, 10(cos 65° + ¢ sin 65°). O\
33, 20(c0s 165° +- 45 165%). 34, 5(cos 265° + ¢ sin 2657

3. 8(cos 365° -+ sin365°). 36, 7(cos 1000° + ¢ sin 1000%.

R
99. Multiplication and division of complex aumbers in
frigonometric form. PN
Complex numbers expressed in trigotiometric form can
be muitiplied by a very simple formtla. For example,

ri{eos Ay + 4 sin A;) - ro(cos Az-i-% sin Ag)
= rirsfeos Ay cos Ay — sin Ay 'sin Ay - i(sin 44 cos Az
4 + cos A, gin Al)]

o\ .
= 1irafcos (4, + AZ{'\—‘I- % sin (A; + A3l ENeY)

That is, the p-r@ai:a{ét of two complex numbers is a complex
number whoseyabsolute value 1s the product of their absolute
talues andablivse amplitude is the sum of their amplitudes.

DiViﬁi}‘;I}IS the inverse of multiplication, and it can readily
be shown that, inversely, the quoitent of two complexr num-
- UErSES o complex number whose absolute value s the absolute

valie of the dividend divided by the absolute value of the divisor
angd whose amplitude s the amplitude of the dividend minus
the amplitude of the divisor. That is,

Ta(cos 4y + ¢ win Ag)

— L oos (A, — Ag) +isin (A; — A)]. (@)
7y
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EXERCISES Xil. D

Perform the indicated operations, first reducing the num-
bers to trigonometric form (when necessary):
1, 2{e0s 50° -+ 7 sin 50°) - 3{eos 20° + ¢ sin 20°).
2. 4{eos 65° 4 ¢sin 65°) - 5(cos 35° + 7 sin 35°). )
3. 7(cos 100° + ¢ sin 100%) - 2(cos 200° 4 4 sin 200%). \
4, (\/5—@(34-3@) 5. (— 2-{—2@)(5\/34—53)\ )
6. 8(cos 85° -+ ¢ sin 85°) -+ 2(cos 50° - ¢ sin 50“) O
7. 6(cos 100° 4 ¢ sin 100°) + 3(cos 230° - £ sin 230"}
8. (—4+4) + (1 +iV3).
9. (—6V3 +6i) = (V2 —iV6). o)
10. A +4) = (1 — 9. \
1. (=8 — iV3) + (V6 ~ 3V2- 4. \\\
100. Powers of complex numbers,
Raising to a power is a spemal case of multiplication, and

it follows by a repeated apphcatmn of (1} of the preceding
section that

r{cos 4 i\}siﬁ}l)]“ = r"(cos nd -+ i sinnd), (1)

where n is a positlve integer.
The relatlén {1} is known as De Moivre’s Theorem.

- ’§€u+tj Example.
) \?5 Find the value of (1 -+ ¢)5.

3 SoruTion. Plot the number 1 + 7. Theabso-
Fre 25 lute valueis V2 and the amplitude is 45°.

(I 449 = [\/2(003 45° + 78n 45°)
= 4V2(cos 5 - 45° + ¢ sin 5+ 45°)
= 4V2(cos 225° + ¢ sin 225°%) = 4(-1 — 9).

The student may check this result by expanding (1 +1)° Y
the binomial theorem,



c 101] ROOTS OF COMPLEX NUMBERS | 183

101. Roots of complex numbers.

To prove De Moivre’s Theorem for the case in which the
exponent is the reciprocal of a positive integer, take the
expression

fr{cos A + isin A)]"" = rlin(cos A +¢sin 4)Y» (1)
LetA = nB. Thentherightsideof (1) reducesto

O\
rt®{cos nB + ¢ sin nB)Y* = 7¥*[(cos B - ¢ sin B)" M
= rY"(cos B + 1 sin B)j .~

or : N\ ¢

[r(cos 4 + i sin )i = 71 (c"sé,wsm é)' @)
Ry 7

P

Since for any whole number k, |
s (4 + 1 . 360°) = cos 4, <N¥in (4 +k-360°)=sin 4,

we have "

[Plcos 4 + 1 sin AH\Q
= [r{eos (4 Nk *360°) + ¢ sin (4 + & - 360°) )"
=T1m (cos,{%ﬁ-k - 360 +zsin—-ﬂ)* . (3)
:t\... n 13

'\

By gn’f'l}g values to & from 0 to  — 1
mclusn?e we obtain n distinet roots
of\he number r{cos A 47 sin 4). If
e’ give & any other positive integral
value we get one of the n numbers already
obtained. Therefore any complex number P-(—d-i\f?%; '

7(eos 4 4 ¢ sin A) has exactly n distinct
fith roots,

Fia. 26_

Example,
Find the fourth roots of —1 — V3.
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Sowurion. Plot the number —1 — V'3 and note thai

=1~ §V3 = 2{cos 240° 4 § sin 240°),

0° }G . ° -, o
(—1 = ¢Vg)ue = s (cos 2407+ £ - 3607 +4 360 -+ Zsin MO_)
- n
= V2[cos(60° + k - 00°) + 7 gin 60° + k. - 909k,

lem.g k suceessively the values 0, 1, 2, 3, we find for th.e”EQu.r
distinct fourth roots of —1 — §V/3: N\

\

. 4 1 '\/t_ 4'”}" e
V2(c08 60° + 7 sin 60°) = \/5(§+£—25) = %\«{5+%’y18,

\/2(1303 150° + ¢ sin 150°%) = V2 ( \/3 + _?i)
2 A

- -3 VBA, V2,

V2{e0s 240° + 7 sin 240°) = xf/é:(i; % - _?)

.__:,..__I_\yé__?'v‘t 18,

V2(cos 330° + 4 s?uz\330°) (‘_ N ‘) = ix‘/fs - %xi’é.

In Fig. 27} the point P represents the complex number

2(cos 2400"4‘ vsin 240°); Py, P;, P, P, represent the four roots
' { whose amplitudes are 60°, 150°, 240°,
330°, respectively.

Note that the roots can he found
graphically ag follows: Draw a circle
with center at the origin and with 2
radius equal to the numerical fourth
root, of the absolute value of the number
whose fourth roots are to be found;
: that is, a radius equal to V'3, Take

Fre. 27 One-fourth of the amplitade of the
. original number (} - 240° = 60°). This
locates the point Py on the circle. The four roots alt lie on the
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airele and are spaced at equal infervals of 90°, Thus we can fnd
Py, P35, Py

In general, the nth roots of the complex number r(cos 4-
+isin 4) can be found as follows: Draw a circle whose
cender is the origin and whose radius ts the numerical nih
root of v; divide the angle A by n, the index of the root. Now
divide the circumference of the circle, from A /nto A /n + 360°
wlo n equal parts. The n points of division will be tZLe~
required roots.

l” b’
<

EXERCISES XH. E 'm.\‘

Use De Moivre’s Theorem to raise to the J{Ldlca.ted powers:

L [5(cos 16° + ¢ sin 16%))2. 2. [\/5((:0322‘* + 4 gin 2296,
% (14 iV, & (1Y

5. [VB(eos 50° 4 ¢ sin 509)]°. &\

6 [cos (—50°) + ¢ sin (—50%)]2,

n(-1 28, “..S(Jr 2y,

% (—v2 4 ivaE (O 1070+
1L 2(cos 50° 4- 5 sin, a})\) I '
12, [eos (—50°) + 'a mn (—60°)]% '

Find all o{the

13, Squareadts of 25(cos 40° + ¢ sin 1),
1¢, S%aré\-oots of 9{cos 200° - 7 sin 200°).
- 1B, Squae roots of 36(cos 340° + i sin 340°).
16Eube roots of 8(cos 36° 4 ¢ sin 36°).
Cube roots of 216{cos 216° + ¢ sin 216°).
18. Square roots of —v'3 + i
% Square roots of 1 + 4.
20 Cube roots of \/3 +4.
L Cube roots of —1 — 4,
- 8quare roots of 2,
Cube roots of 1.

SvacEsTion, 1 = cos 0° + 4 sin 0°.
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24, Tifth roots of 1.
95, Tifth roots of 4 4 44.
i 1 V3,
98, Wifth roots of - — — ¢.
2 2
97. Fourth roots of —¢.
28, Cube roots of —7 -}- 6i. )
29. Sixth roots of 25i. \
- 30 Seventh roots of —64(\/§ + ). \\\
Obtain all of the roots of the following equat@o‘i;.s\?.
a8 — 216 =0 3SAH1=0. - AF+64-0

34 zt+22+1=0 86 at—~a+] =Q\\&36 =z =0

M+t +es+1=0 N

\
SveeesTioN. Multiply by = — 1;;§}ilve the resulting eque-

tion, and discard the extraneoys root * = L.

£

88 xt— 284t —x4+1=0 "
O

&Y

"l
$

L
A

\ </



CHAPTER XIlI

Theory of Equations

2 AN
7N\S *

102. Polynomial. " K
A polynomial of degree » in the variable = is the.funetion

N\

Y
fi) = @™ + a7 £ s AR (1)

- * 3 LI - y \:
in which % is a positive integer, and thg’d"s are constants,
of which @ #¢ 0. Tor example, =0

205 — 3x* -+ TaX= z + 10

is a polynomial of degree 54" The polynomial (1) is alse
called an integral ratio L function of degree n. (Cf. sec-
tions & and 18.) If, %8 set it equal to zero we have an
integral rational eq&ﬁon of degree n. A root of the equa-
tion f(z) = 0 is-ealled a zero of the function f(z).*

Although .ti;[e\ coefficients in (1) may be any complex -
numbers, w@ shall restrict our discussion to polynomials
and in‘g@al rational equations having real coefficients.
Howewer, in"any theorem and its proof, the coefficients
&y be complex unless otherwise stated.

03. Remainder theotem.
If a polynomial f(x) is divided by x — 7, the remainder 1s
equal {o the value of the polynomial when r is substiiuted for x.
Divide the polynomial by z — 7 until the remainder,
“:-'hich may be zero, is independent of z. Denote the quo-
tient by @ (2) and the remainder by B. Then, according to

* This definition is not restricted to inbegral rational funetions.
187
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the méanﬁng of division,
f@)= (@ —nQk) + R.

Since this is an identity in z, it is satisfied by all values of z,
and if we set © = r we find that

fO) =6 —1QE) +R=0.Q¢) +R = B, o

N

S )\
- Here it is assumed that a polynomial is finite \for’ every
finite value of the variable. Consequently, siziee Q(z) is a
polynomial, @ () is a finite number, and 0,.Q%) = 0.

Exﬂmp!e- I / \\':
f(a:) =2:c3—5x2—w+1(i@._%2(=x—r)
2p3 — 42 22"~z — 3(= Q@)

o= xR — 2 N
— @+ 20\

-8z + 10

N—3z + 6

O (= R)

" §
~\‘~
1) = f(2) = 252 590 — 94 10 = 2.8 — 5.4 = 2+ 10

_=,\~1§~7— 20—2410=4=R.
104, Fqs!&r’iheorem.

If s\i{s’ﬁ root of f(z) = 0, then x — r is @ factor of f(z).

By the preceding section, the remainder obtained by
iyiding f(z) by 2 —ris B = f(r), Butf(r) = 0, sinceris
B oot of f(z) = 0. Thercfore, '

J@) = @ - 1@+ R = (z—rQw),
or & — ris a factor of f(x).

105. Converse of the factor theorem.

Conversely, if & — 7 45 a facior of f(x), then r is a root of
Flz) = 0.
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Since £ — 7 is a factor of f(x), we can write
f@) = (& — r)Q(z).
Therefore,
fr) = (r =1Qr) =0.Q(r) = 0.

106. Synthetic division. ' \

The division of a polynomial by a binomial of the type
& — r can be effected simply and quickly by a process ealled
synthetic division, which we shall illustrate by méans ‘of the
example 22 — 32> — 13z +5 +z — 3. By*fhe ordinary
process of long division we get

N
27 — 30 — 13z + b (:a\~~3
22 — 6 %27 + 35— 4
3z — 13z &\
32 — 92 &V
— 4534_ 5
o

Much of this i& fuite superfluous. In the first place it is
unnecessary Pawrite the first term in each line to be sub-
tracted. @’ﬁuttmg these terms, and not bringing down
the terLQQﬂf the divisor, we bave

:\f"" 2 — 32— 13z + 5 (@®—3
”\3 df — B2 25 + 8 — 4
N\ —
3zr
— Oz
— 4z
+ 12
— 7.

Next we write only the coefficients, and push these up
mto the more compact form shown below. The quotient
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has been omitted since the coefficients of the terms of the
quotient, as well as the remainder, appear in the third line
(provided we bring the first coefficient, 2, down into this
line). : -

2~3-13+ 5 (1-3
—6— 9412 .
243 — 4-— 7 )

'\
\

Finally, to replace subtraction by addition, tve replace

(in the divisor) —3 by -3 and omit the 1 . \:

2—-3-134+ 5 \@
+64 9 1200

2+3— 4 9

!

Quotient = 222 + 35 — 4, remainder = —7.

RuLe., To divide Flx) bya: — arrange f{z) according to
descending powers of x, being sure to supply each missing
power with a zero as &8s “coefficient. The work can be con-
vensently arranged ihthree lines.

In the first line write the coefficients of f(z) in order, thus:
Go 1 Oy ++: @’ (Zero must be written for any missing
power.} \

Wrile, Qo\m the first place in the third line. M ultiply ag
by r, ;;\\bdcé the product in the second line under ay and add,
plasiny the sum in the third line. Multiply this by , place

Hieproduct in the second line under ay and add.  Continue this
\process as far as possible,

The last sum in the third line will be the remainder, and
the preceding numbers, reading Jrom left to right, will be the
coefficients of the powers of x wn the quotient, arranged accord-
wng to descending powers of x.

Example.
Divide 32* — 522 4 3 — 99 by z 4 2.
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Souwriox.  B40— 5+ 1—20 (=2
— 6412 — 14 4 26
56+ 7—33(+6)

Quotient = 3%° — 6a® + 7x — 13, remainder = 6.

EXERCISES XMl A o

)
Use synthetic division in the following exercises: O ’
L (28 4+ 4 — 22 — B) + (z — 2).
9 (2% — Rat 4+ Tx +4) + {z — 3). \
3 (28 32— dx+7) + (z~ 1) .'j:,\ ‘
4, (@ + 622 + 6z +2) + (z + 2).

@ et — 2w 12) + (3 43) O
. (4t — Ta? 4 15z — 1T) + (8 + Dy
L (328 — 32 — 60} =+ (g —4). OV
o (208 4+ Tt 4 80) + (x + B). o\

9, (a% 4+ 22% — 32% + 4x — 5)m(E — 1).

10, (2z* 4 5x® — 37x + 36) 2Nz 1 4).

1L (42t + 302 — 1) + (REND):

12, (@ 4 2f — 22° -+ 160) (x + 3).

13 (3t — 70 2 &2+ &+ D) |

14, (9% — 60t + Ba* — 1527 + 4o — 12) =+ (& — 3).
16. (3z° — 0.2¢7% 0.30z — 0.023) =+ (z — 0.3).
16 (2% + Jfad — 045z — 0.112) -+ (z +0.2).

17, (x% 4-@Buk? — 6a%c + 3¢°) + (¢ — @)

18, (psdaty — Tayt + o) = (@ 4 3y)-

19 (8 — 40? — 4) + @+ V2).
2003 — 4% — 4) + (z — i)

L (20 + 307 — 20) + (z + 20).

22. (20 + 32 — 10z — 18) + (z — V).

Use synthetic division and the remainder theorem in the
follo“-"ing_exerdises:

93, Given f(x) = 2 — 322 + bz + 7; find f(2), f(=3).

24, Given f(z) = 3a* — 42° — 2% — 5z +&; find f(1), £(—2),

@)
%. Given f(x) = o* — 3827 + 5z + 42; find 7(6), J(-—6).

o9 =3 O n
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26. Show that » — 5is g factor of 22* — 322 — 39, + 20,
27. Show that (z — 3)* 18 a factor of 3zt — 16y + 11z +
42z — 36.

107. Location of the reql zeros of a polynomial.
Synthetic division is usefy] i graphing a polynomial,\
and consequently in locating its reql zeros. For example)
consider the polynomial ()
'\

F@) =228 — 722 — 102 =+ 20. “:"}’ﬂ\

The remainder theorem tells us that the remn;hfder obtained
when dividing by z — r i F(r). By syrbbctic division we
can then construct the following tahlen™

S
x [ 3| —2]_1 0’,':1.’1 2 3] 2| 5
Jix) ’ —67 :_;1__;&_1_ 5 } —12 _19f —4 | 45

IF the values shown if this table are plotted we have a
graph of the polyno;ﬁi&l (Fig. 28). We note that it crosses
' Yi L\ the z-axis between —2 and —1,
>0 between 1 and 2, and between
4 and 5. Since f(z) = 0 wher-
ever the graph crosses the z-axis,
we have located three roots of
the equation f(z) = 0.

Here we have made use of the
following general principle, which
applies to any polynomial f(z):

Prvcrers, If f(a) and J(®) have opposile signs, fhf_m.
flz) = 0 for at least one volue of © between a and b. That 5,
there is at least one real root of F(x) = 0 between a and b. '

This principle depends upon the fact that a polynomial
is a continuous function and that its graph is a continuous
curve, which means essentially that the graph is not com-
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posed of disconnected parts, If f{a} and f(b) have opposite
signs, the points A and B on the graph, corresponding to
z = ¢ and 2 = b rospectively, will be on opposite sides of
the z-axis. Conscquently the curve must cross the axis at
least once, and in any case an odd number of times, between
Aand B. But to each crossing there corresponds a root of
f®) = 0. .

As a consequence of this fundamental principle we h\'zi‘_vé
the following useful propositions: « \

If an integral rational equation of odd degree With real
coeffictents has the coefficient of ils term of faj;ghést degree
positive, the equation has at least one real roababhose sign is
opposite to that of the constant term. A\

Let the equation be \\

J@) = ap + b a, ED, @ >0 (1)

Bince n is odd, f(z) will be posii;i\;e for large positive values
of 2 and negative for largenegative vatues.* It will have
the value a, for z = 0. {Symbolically,

§

3

fmo) = —& S8 THO) =t () = o

If a, is positivé-there will be a root between — <« and 0,
that is, a Ll{%@&”c-ive root. Similarly, if @, is negative, there
will be ,\fgclsitive root.

If givvintegral rational equation of even degree with real
f?em}lts has the coefficient of 1its highest power positive,

\‘ﬁld" has dls constant term negative, the equation has ai least
one-postiive and af least one negalive root.

If, in (1), n is even and a, < 0, then f(x) will be positive
for large positive and large negative values of #, but will
be negative when & = 0. It follows that there will be at
least one positive and at; least one negative root.

* This is because the sipn of F(z) 3 determined, for sufficiently large numer-

icel values of x, by the sign of the term of highest degree. For example,
@ =~ 802% — 50z — 1000 will certainly be positive if 2 is 100 or more.
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108. Upper and lower bounds for roots.

If v is positive (or zero), and wpon dividing a polynomial
f@) by © — r (synthetic division) we find that all numbers
n the third line are positive or zero, then r is qn upper bound
to the roots of the equation f(z) = 0. That is, no root can
be greater than r. N

For any number larger than r will make the numbhers.in
the third line still larger, and consequently the 1'ergiziin\der.
cannot be zero. Hence no such larger number can be'a root.

Example 1. RAZ

Find an upper bound to the roots of O
K70
Jlz) = 223 — 722 — 1Q$}i—“20 = {),

Sorurion. We have a]read;(jfi)uﬁd, in the preceding section,
that there is a root between, dand 5. Let us divide the poly-
nomial by x ~ 5: ™

250 7-10+20
(10415 + 25
N 2+ 34 54145

All the nuibérs in the third Hne are positive: hence 5§ is an
upper botmd to the roots.

O\
:Tp find a lower bound 1o the roots, use the equation
~J6—2) = 0, whose roots will be negatives of those of
N (2} =0. (That is, if f(x) = 0 has a root = — —5, then
f(—z) = Owillhavesroot g = 5.) Ifr (a positive number)
18 an upper bound to the roots of f(—x) =0, then —ris @
lower bound to the roots of f(x) = 0.

The following rule, which is not difficult to demonstrate,
may also be used in determining a lower bound to the roots
of an integral rational equation, f(z) = 0: If r is negative,
and upon dividing f(z) by @ — r (synthetic division) we find
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that the numbers in the third line allernate in sign,* then r is a
lower bound io the rools of f(&) = 0.

Example 2.
Find a lower bound fo the roots of

f@) = 2% — Tx? — 102 + 20 = 0, ' .
SoLuTION. U

F(—) = 2(—2)" — 7(—2)* — 10(—2) 20
= =207 —Ta? + 107 +20.

I

Note that replacing x by —x changes the mgﬂ%sof all terms of odd
degree but does not affect terms of even degree\ ™
Set f{—=) equal to zero and cha:nge algns

23 - Tuw? — 103'—. 20 = 0.
We have found in sect-ion“m*}: that Jf{x) has a zero between — 1
and —2; eonsequently f(#g) will have a zero between 1 and 2.
Let us show that 2 is <€i:{1pper bound to the roots of f{(—x) = 0.

24 7—10-20 (2
N 44+
:..{3 2 i1z + 4

N/

All ﬁhe humbers in the third line are posn;lve 2 is ah upper
hOUhd to the roots of f(—z) = 0, and —2 is & lower bound to the

\1”013‘53 of f(z) = 0,

EXERCISES Xill. B

DPraw graphs of the following polymomials. Give exact
valuey of their integral zeros and locate their other real zeros
between consecutive integers.

L2 — 522 4 2 + 8, 2. 92° — 1527 + 332 — 20.

* A0 may be counted as either + or —.
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3. 3z% — 2222 - 20x + 30, 4, 2* — Tx? + 36.

B. 2z* 4 322 — 20x — 21. 6. 22 4 923 — Bx? — 36z,

o a® - Tr4-2, 8. o — Tx2 4 2,

9. 2% — 43?2 — 51 4 14. 10, 42® — 422 — 29z + 15.
11. 2% + 22 — 3z + 10, 12, 223 + g2 — ¢ — 7.

13, 3zt — T2® 4+ T2® + 5x — 12.
14, 2% - 8 — 722 — 122 — 20,
15, x* — 222 4+ 2, 16, z* — 2% | 322 — 82 O\

Q"

Find, by the method of section 108, upper and lowée bounds
(nearest whole number above or below, respectisely) for the
roots of the following equations: D

T\
7, 2 44—~ 2 — 5 =0. 18. w3 — 2 3+ 7 = 0.
19. 323 — 222 ~ 62 — 5 = 0. 20, 2z° + 7@.— 3z —8 =0.
2L a® — 12244 = 0. 22, 2% — 12xf 4- 4 = (,
23, 2* — 42% — 82 — 163 + 32 = 0N
24, ot 2% — 722 — 0z — 100 = 0.0

109, N_umber of roots. O

We assume the followdy theorem, which is called the
fundamental theorem<df algebra: Every integral rational
equation has ai least (rnk rool. (For proof see Louis Weisner,
Introduction to the Theory of Equations, page 145, or L. E.
Dickson, New(Pirst Course in the Theory of Eguations,
Appendix. )\ ¢/

Then }f’@éan prove:

TH:E\QREM. Every integral rational equation of degree m,

M) = et fax™ 4 fa, =0, g 0, (@)

N Jas exactly n roots. .
By the fundamental theorem, f(x) = 0 has at least one
root. Let this root be r,. Then, by the factor theorem,
¥ — 71 18 a factor of f(z) and we can write -

f(x)_= (@ —r)Q(x),

where @, (x) is & polynomial of degree n — 1, hlaviﬂg a" ™
as 1ts term of highest degree.
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Applying the fundamental theorem again, we find that
Qi(z) has at least one zero, say ry, and x — r, i3 a factor

of @(x})., Thus,

Qi(x) = (@ — m)Qs(x),
fl@) = (@ — r) (@ — r)Q:(z),

and

where Q2(2) is a polynomial of degree n — 2, whose teljm\c\)f
highest degree is qoz™ 2. . O

Continuing this process n times we get N

f@) = @ =)@ =) - (& — O,

where @, (x) is a polynomial of degre(;:?%\\-L n = 0, whose
term of highest degree is apz® = ag. Ahat is, @y is the con-
stant ¢y, Thus, O

J@) = m =)@ ) - r), @)

and f(z) = 0 has the n reotd vy, o, « « -, 7.

The equation can hagemo other roots, for no other num-
ber, such as r, whef &ubstituted for z will make any of the
factors an the right side of (2) equal to zero. :

It should be fitted that the numbers 7y, 75, - - -, 7, do not
have to be reall Also they are not necessarily all distinct.
For ex ple; we might have = — r oceurring m times as
a factof o " f(z), in which ease r is ealled a muitiple root
of (@)= 0 of order m, or a root of multiplicity m. A root
Of;m‘ultiplicity 2 is called a double root, a root of multi-

litity 3 is a triple root, and so on. A root corresponding
to a linear factor which occurs only once is called a simple
Toot, -

As g corollary of the foregoing theorem we have the
fOHOWing;

If two polynomials in the same variable, each of degree not
freater than n, are equal in value for more than n distinet
Yalues of the variable, then the polynomials are identical.



198 THEORY OF EQUATIONS [Ch. XM

Let the polynomials be
a2 + o e gy, b 0T by,

1f they are equal for more than n values of x, their difference
1s zero for more than n values of . This difference may be
written in the form:

(80 = b)e? + (o = b2+ (a0 — 1) =0 8

But if one or more of the coefficients (a, — bn}, (al by),

, (@, = b,) in (3) were different from zex() we should
have an equation of degree n, or less, With more than »
distinct roots. This contradicts the foregoing theorem and
is therefore impossible. Thus, each\of the coefficients in -
{3) must be zero, and we have

»,’

a‘D"_“bO’ a1=b!;' M an=bn-

In other words, the two polynomlals are identical; their
values are equal for a‘{l values of .

110. Imagmary r}ofs.

If an mwmnary number a + bi is a rool of an integral
mtf:,onal eq«,{atwn fx) = 0 with real coefficients, the conjugate
MG, ?‘y‘ ‘number @ — bt is also a root.

Site a + bi is a root of f(x) = 0, then by the factor
theorem z ~ (& +b) is a factor of f(z). The method of

doof will be to show that x — (a — bi) is also a factor of
f (z) by showing that the product of these two linear factors
isa factor of f(z). Denoting this product by P(z), we have

Pa)=lz— (a-+ )z — (a — )]
=a:2—2aa:+a2+b2.

Divide f(x) by P(z) unil the remainder is of degree not
higher than the first (that is, until it ig linear or constant)-
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Denoting the quotient by @(z) and the remainder by
Rz + 8, we have the identity

fx) = P(z) - Qz) + Re + 8, (1)

in which B and S are real because P (x) has real coefficients.
In the above identity set 2 = a -+ k. By hypothesis,

Jla + b)) = 0. Since x — (¢ + bi) is a factor of P(2){ )

" follows by the converse of the factor theorem that Pla, +7n)

= 0. Therefore from (1) we obtain the relatmn { "«.

0=0-Qla+¥)+R- (a+in)+"8 @)
Ra+S+sz—-0\ (3)

Since an imaginary number cannot ‘be zero unless both
itsreal part and its i imaginary par bare zero (see section 92),
it follows from (3) that \

Ra+S\ 0 Rb = 0. ()

But, since g + be gs\imagn:laly, b = 0. From the second
equation of (4) ip\follows that B = 0, and then, from the
first equation Of" (4), that § = 0. That i is, the remainder
Be+8in {1\3‘ is zero, and f(z)} = P(z) - Q{(z). In other
words, P%x) is a factor of f(z).

But,z— (@ — b7) is a factor of P(x), and consequently
Off {3} Therefore, a — b is a roat of f(z) = 0.

111. Quadratic surd roots.

Aradieal like V'3 or V5 5, in which the number under the
Tadical sign i rational but the radical itself is irrational, is.
Glled 2 surd. A surd is called quadratic, cubic, and so on,
3ecording as its index is two, three, and so on.

A theorem for quadratie surds, similar to the theorem
n the foregomg section, is as follows:
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If a quadratic surd a + Vb (a raftonal) is a root of an
wntegral rational eguation with rational cocflicients, the con-
Jugate surd a — Vb is also a rool.

The proof follows a line of reasoning similar {o that used
for the theorem on conjugate imaginary roots, and will not
be given here. ~

EXERCISES XHI. C _\' N,

1. Solve the equation z* — x® — 16x2 - 50z + 13 0 given
that one of its roots is 3 4 24,

SoLurion, Sinced -+ 24 is aroot, 3 — 24 13\3 root. There-

fore the expression \
~
[t — 34+ 2)[x— (38— 2;::)})%':::2 — 63 4 13

is a factor of the loft side of thé, gwen equation. Dividing by
this factor, we get 22 -+ D:B & - 0, a quadratic equation

whose roots are 1{—5 =3 1\/21}. The complete solution is
Sz =3 2% -5+ VaI).

2, Solve the eq%mn ' — 7% -} 1la® — b — 2 = 0, given
that 2 %4 V3 is 2 root.
3. Solve,‘r{le equation 2z - 928 + 171:2 — 11z — 45 = 0, given
that\~9 + z\/_ 5 I8 a root.
4. Belve the equation 2s* — 82° 4 3122 — 5lx + 78 = 0, given
Sthat (1 + 52) is u root. :
(9. Bolve the equation 29 — 42% — 4x¢ — 838 — 11z? — 4z — B

. =0, giventhatisa double root.

6. Bolve the equation 2 — 425 4 62% — 122° - 162 — 8 = 0,
given that 1 — 7 is a double root.

112, Graph of a factored polynomial.

When a polynomial, or integral rational function, f(¥),
‘i expressed in factored form, its graph can be quickly
sketched. At each real root of f(@) = 0 the graph meets
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the z-axis. At each simple root the curve crosses the axis
at an angle, at each multiple root of even order it is tangent
to the axis and deoes not cross it, at each multiple root of
odd order it is tangent to the axis and crossesit. A graph
of the polynomial
Yy = apl® — ) (x — re)?(x — 13)° (ap > 0)'.- \
,\“\
in which the r's are all real, would appear as in Fig. 29
If the polynomial contains
any imaginary factors they
oceur in conjugate pairs (oee-
tion 110). These imaginary
factors do not affect the man- (R
ner in which the curve meets the x—ams\but do affect the
shape of the curve.
Proofs of these statements AT 110‘5 dlfﬁeu]t but will be
omitted here, S\

EXBQCISES X D

Sketch the g gjraph}x\bf the following polynomials:

Lis+2)e— 3)(x —5). 2 @43z -1z +4).
S 5 P - 1). 4 2@ +2)@-—2).
5. 3z + 1)@= 3)~. 6. —(z+ 2)z — 1)%(x — 4)"
T (@~ N(x — 4y 8. 1(2s — 3)%z + 3)~
9. —(w*+ 3)x — 1)z — 3)3.
W @5 4 - 42,
ANt + 6)(z + 3) (z — 1)(x —~ 3)(z — 4).
x"(x + 1z — 2)3(z — 4)%
B3 -0 — z)2(4 + ).
1 @+ D@ — 1)2z — 2)8 (x—3)4

113, Descartes’ rule of signs.

Two consecutive terms of a polynomial in @, with real
Coeflicients, when the terms are arranged according to
deseendlng powers of z, are said to have a variation |n gign
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when one is plus and the other minus. Thus, the poly-
nomial

22° — 32t — 40P +3x — 7

hag three variations in sign. (Note that some powers of ¢
may be missing.) Descartes’ rule of signs states: O

An vnlegral rational equation f(x) = 0, wilh real eoeffi-
cients, has as many posttive rools as it has variationsof signs,
or fewer by an even number. (A root of mul;ipﬁéity m is
counted as m roots.) e \

Suppose that a polynomial P(z) is represented by the
following scheme, in which the dots dftef a sign indicate
that there may be more signs of thesame kind, but that
no change in sign can occur befpre the next explicitly
written sign: O

P) = +&V = 4o

Multiply P(z) by & ~r(r > 0). Schematically the multi-
plication may be represented by

&
9:1?(}):4— ........... N EEEEE
TPx) = - e i - =

@ SnP @) = L A

Y
Th@&IhbiwouS sigh = indicates that the sign of the corre-
sponding term is undetermined—we do not know whether

(3t is plus or minus.  But no matter what signs these doubt-
’ ful terms may have, there is at least one more variation in

sign in the produet (z — r)P(z) than in P(z), since there
1s an additional variation at the end.

The product may contain more than one additional
variation; for successive terms of like signs, for example,
+ + 4 or — ~ ~;in the original polynomial, which are
replaced in the product by ambiguities may actuslly be
replaced by + — + or — 4+ — respectively. But such
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changes always increase the number of variations by an even
number.

Hence the number of variations in (& — r)P{z) exceeds
that in P(z) by 1, or by 1 plus an even number, that is,
by an odd number.

Now suppose that the produet of all the factors corre- « N
sponding to negative and complex roots of f{z) has becn~\
formed into a polynomial P(x). Since P(z) = 0 has-no™
positive roots its first and last terms must have like, Slgllb
{Otherwise it would be negative for & = 0 and posﬁ:we for
large values of x, or viee versa, and would have)a positive
root.) Therefore, P (z) must have an even riiniber of vari-
ations in sign, say 2%. N

If a positive root is introduced by mfslt‘iplying P(zx) by
& =71 (ry > 0), the number of variations is increased by an
odd number, say 2%, + 1. Suppose that we have intro-
duced m positive roots, ry, « + 'n g‘m We have increased the
number of variations to \

WA 2% 41+ +2.k +1
\\ =20k + ki 4o+ ha) +

That is, the number of positive roots, m, is the number of
variations decqzased by 2k + %k -+ + k), whichisan
even numpen ¢zero if all the &'s are zero) But this is Des-

e

Illform&tlon concerning the number of negative roots of
aJ3‘~"«Cﬁ‘lafuorl may be obtained by applying Descartes’ rule
o f(~ ~z) = Q.

Example 1.
Discuss the nature of the roots of
j@) =23 +3 - 5=0
SoLvmion, 1 variation ; therefore 1 positive root.

Jl—2) = —x*~ 32 —-56=0
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No variation; thercfore no negative roots of the original equation,
The equation is of third degree and must have three roots.
Thus, two roots must be imaginary.

Example 2,

Dliseuss the nature of the roots of

f(x) = 2° — 3at —

422 + 3z — 7 = 0.

- 2\AD

s M

SoLuTioN. 3 variations, therefore 3 or 1 positi€e Boots.

At ¥ i

fl—) = —205 — 32 & da® — 3T = 0.

2 variations; therefore 2 or 0 negative rgqﬁs.:
The various possibilities for the kindswf roots are shown below.

Positive

Imaginary £

Negative 8

B DD

Total <“

o] o

[ BN o ]
Do

[}

2% )
,\\.‘

EXERCISES XHI. E

A
Giye-all of the information obtainable from Descartes
Qlét)’f signs about the roots of the following equations:

1.§8+7x_5_0

3 22 483zt — 4z — 6 =0,
422 — 6z + 7 =0,
T+ 22~ 5z 44 =0.
= (.
=0,

9 284+ 12224+6x— 3
1L, 322 — 522 - Tz — 9
13 928 — 3zt + 1L 7 = 0.
15. 423 4
17, e+ 322+ 5z +7 = 0.
19. a* + 23+ 21 =0.

21, 41t —

+ir—1 =0

2,
4,
6.
8,
10.
12,
14,
16.
18,
20,

3 + 22+ x4 5=0,
22 2+ %t~ 52t a2+ 7 =0.

24T —5 =0,

By — z? + 10z — 8 = 0.
&% 4 622 4 5z — 2 = 0.
2¢% — 3a? + 10z +1 =0
42 4322 + 2z + 1 =
o — 222 —3x+4=0
6z® + 1122 — 7z — 9 = 0.
Iwd — 1zt — 1z —1 =0
49z — 4z +6=0.
Btttz +1=0.
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23 3zt 4 b2 + Ta? — O9x - 10 = Q.
M, o2t - 22" — 32 dz— 5 =0,
28, bt — 3z 4+ 2x% — 10z — 12 = 0.
26. 6zt — T2° -+ 322 — 11 = (.

T 3zt — Oxt — 22 - 5 = 0.

28, 4zt L 327 +2 = 0. 29, 4zt + 322+ 2=10.
30, ¢ — 20 = (. 31, =% L 20 =,
BB —-1 =010, 3B. B —23 41 =0. O\

'\
Ny

114. Rational roots.
A rational number is one which may be exactly ,ei{ﬁreésed
as the ratio of two whole numbers, for exa.mple,:\gi, e
5, . Any number which cannot be 80_expressed is an
irrational number, for cxample, V/ 2, 7. \\
TarorEM. If a rational number b/c, &fvaction in its lowes
lerms or an integer,* is a root of the infegral rational equation

apx" 4 a, x4 .. -:b:iir}_:x +a =90 (1)
with integral coefficients, then, b ‘is o factort of ¢n and ¢ is a

Jactor of a, AN
To prove this, subs(it{ute b/ein (1):

b n
“ ()
Y o
. Mump]}t b}\)th sides of the equation by ¢*:
:’\'.;:"’EJ'E}?’B Fa e v f o, et g = 0. (8)

N

mn%p%e the last term to the right side and factor b from
© eXpression remaining on the left: : '

WS a1
a}("’ +...+an_1%+an=0. @)

C

blagh™? + b v F g, ) = —at (4) __

Since p i a factor of the left side it is a factor of the right

X bjeisay integer, then ¢ is to be taken as 1. : ] .
conts; h"«‘n_ We say that b is a factor of «, we mean here that the integer b is
tained in the integer g, a whole number of times.
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~ Possible denominators (factors of 2): 1, 2.
1
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side. It cannot be a factor of ¢, sinee b/c is in its lowest
terms. It must thercfore be a factor of a,.
Similarly, by transposing the first term in (3), we get

cla bt oo @, b F 0, c") = —ah® (B)

N\

Arguing as before, we see that ¢ must be a {factor, of the
right side, and since it is not a factor of b it must be\a‘fa\obor

. Of [ \ N/
CoROLLARY. Any rational voot of the equalion)
x" + aixn-i + e +an—1x +'dn = 0! (6)
in which the &'s are integers, is g Integer and is @ foctor
of . o\

Rational roots can be found by synthetic division.

Y
NN
ay
ny

Example.

Find the :rationg@*‘z;})ots of
K~
J@&H= 2 4 9 4 1622 + 13z + 6 = 0.
A/

Sq&.@%&ﬁ.

Réstible numerators {factors of 6): 1, 2, 3, 6.

®

3,
2
« Possible rational roots: = (1, 2, 3: 6, 3, %)
By Descartes’ rule there are no positive roots of any kind,
consequently we only need to try negative values. Inlooking for
negative roofs it is usually best to change to f(—z) = 0. He®
fl—z) = 2t — 923 4 1522 — 13z + 6:

4 variations; therefore 4, 2, or 0 negative roots.
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We test the possible roots in order, beginning with the smaflest. *

2-9+15-1346 (3  2-9+15-13+6 (1
1— 4 2— 74 8—3
2-8+11 2-7+ 8- 5(+1)

Note that 1t is unnecessary to complete the synthetic division
for1/2. For1/2 X 11 is a fraction, and it would be impossible to, ()

come out with a zero remainder. O
2-9+15—-13+6 (3 £ is a root of f{—x),=0)
3— 94+ 9—-46 —% is a root of f{z) = 0.

2—64 6 — 4(10)

We now use the depressed equation, 228 — ‘%.\-\l-oﬁx -4 =040,
tepresented by the numbers 2 — 6 + 6 — 4,%hich is the quotient
ohtzined by dividing f(—z) = 0 by x — $\JThis can be simpli-
fied, by division by 2, to »* — 3z +~33:— 2 = 0. It has the
same roots as f{—x) = 0, with the.eXeeption of 3/2, which has
been divided out. N\

For the depressed equation st@have
Possible numerators: 1, \i )
Possible denominators .

Possible rational root\S‘:: 1, 2.
We have aqu;m\d}}"tﬁed iinf(—z). Try2:

1-3+3 'vé“ - (2 2 is a root of the depressed equation,
2782 —2 is a root of f(z) = 0.
LN (40 "

9 (+0)

The new depressed equation is 22 ~ x - 1 = 0. Solving by
the quadratic formula, we get '

1+ V]I—4 1£4V3
r = =] .
2 2

L] . - .

By beginning with the numbers which are smallest numerically, we can
sy mes fn bounds for the roots, doing away with the Recessity o testing
Y larger valyes, :
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The roots of f{x) = 0 are negatives of these. The original equa-
tion was of degree 4, and we have found all 4 roots; they are

3 —1:&1‘:\/5.

2’ ’ 2

Note that even though a certain number has been foind
to be a root it may possibly be a root of the depressed
equation. This will be the case if it is a multiple rogt oI the
original equation. N\

"
< 3
$¥7 2

-
EXERCISES XM F 2O

Find the rational roots of the follgwing equations:

Lat—2?2-Tx+3 =0 22l 2 4+ 6 = 0.

3, 2% — 0952+ 172 + 12 = 0. 4°9° - 1022 + 1tz — 40 =0
5, 20+ 022 — 3z — 1 = 0. 436 32% — 1022 — llwx ~ 2= 0.
7122 + 422 — 172 + 6 =0,
.8, 8% 1 38 — 13z — 45 = 0.

9 28—+ lr—3=0 1023 +f*—Fx—1=0

11, 2% 4 622 — 36,=\0. 12, 32% — 11z? — 16¢ + 12 = 0.
13. 62t — 2% £ 63— 4z = 0.

14, 2t — 70 % T8 — 3r — 18 = 0.
15, 4xt +‘1\2x3 4 2?— 24x — 18 = (.
16. 82t L %8 + 4% — 12z + 16 = 0.
17, 5ot &F 134° + 692° — 250 — 2 = 0.

180 82% — 252° ~ 242 -+ 121z + 42 = 0. R/
19> 624 +192% — 10127 — 2542 — 120 = 0. 5

(V20,1204 4 233° + 1022 — 42 — 5 = 0.
9 "~ 21, In Fig. 30 the tangent TP is 9 inches
in length. The diameter TR is ex-
tended 3 inches to the point @. The tangent @S, extended,
passes through P. Find the radius of the circle.

Q
Tig. 30

115. lnational roots.

Irrational roots of any type of equation f{x) = 0 can
be found by a process of successive approximations, using
the general principle stated in section 107, that if f(a) 8D
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j(b) have opposite signs there is a root of f(x) = 0 between
eand b. If the equation is an integral rational equation we
may employ synthetic division to obtfain values of f(z),
or we may obtain them by actual substitution. For other
types of equation, such as™®

logz —2+2=0,
we must use actual substitution. ' C

Example. 7,
Find an irrational root of f{z) = 2% 4+ — 5 = 0N)

SoLutioN. By Descartes’ rule the oY
equation has one positive root and no L ©
negative root, henee two imaginary roots, Z\\J

By synthetic division, or by actual sng -/
stitution, we find that f(1) = &3,
f(2) = 5. Thus, the curve y = f(x) :érbéses 7 2
the z-axis between « = 1 andSz = 2. E
(8e Fig. 31.) A first approxiiation to “1f
the root is &z = 1, e -2

To get a better app;&\fmaﬁion we add _3.4 ji] C
ki to 1. To find hi\we use similar tri-
angles; '*' ) ‘:\ i

~CAD DE hy

3
o~ acTee C 178

¥
Hmu.&.o‘m

Al

Fia. 31

) \ N hy = 0.4 approximately.
A—\Jec'ond approximsation to the root is z = 1.4

We now find f(z) for z by tenths, using synthetic division or
Straight substitution. We shail use the latter, as it is quite
seneral in its application, synthetic division being applicable only
to pﬁolllynomials. Using tables of cubes or a calculating machine,
we find .

2 ;
-hie symbol log » means the logarithmof . (See Chapter XIv.) .
m_;,rlhls_ assumcs that the graph of the equation y = f(z) from A to Bisa
ight: line. Actually it is a eurve, of which 4B is a chord.
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(143 = 2744 (L5)* = 3375 (1.6)8 =  4.006
1.4 1.5 16
4144 4875 5.606
-5 -5 -5

F(14) = ~0.856 f(1.5) = —0.125 F1.6) = 06%

‘We see that the curve crosses the z-axis between 1.5 and 1.6 "l'\o

~~ ’

¢\
O
. o Yo.osist

0.656 151 B /152]

w X
L5k, L6| X 0047050 £.04705

0.125)/] 0.125 A
0.1 0.01
Fia. 32 ».f; Fie. 33

get a better approximatiog ta "the root we add h to 1.5. Again
we find, by similar trla,ngles,

hg J}ha 0.125
= 0.015+.
ON\5—I—0696 0.821"° fo = 0015+

To caa‘ry\the result still further we proceed as before, taking
by hundletiths S

\\(1 B1)d =  3.442051 (1.52) = 3.511808
1.51 152
N 3 4.952951 5.031808
N/ -5 -5
F(1.B1) = —0.047049 F(1.52) = 0031808
s 0.047049
0.01  0.047049 + 0.031808
_ 0047049
~ 0.078857

ks = 0.0060—.



€116] TRANSFORMATION TO DIMINISH ROOTS 211
Our next approximation to the root is .
z = 151 + 0.0060 = 1.5160.

The process can be continued as far as desired, although the
suecessive steps become more Laborious.
_ O\
EXERCISES XU, G &
Find, correct to three decimal places, the irrational r&pfs
of the following equations:

Laddsr—4 =0, 2 2 — 22— 5 =00
A2 —3z~1=0. 4, 2° 4+ 9z + 6 =0,

. 2 + 4z + 24 = 0, 6. 2° — 3z -+ 0.
T4’ — 92— 6 =0, 8, 20 — g™\~ 9 = 0.

% 2 -6z +2 =0, 10. 2* — AT 20 + 3 = 0.
2 =322 4 4y — 5 = 0. 12, z° -f--B:r:2 +dz 43 =10
B.oat— 20— 50 = 0. 14 38— &% — 50 = 0.
3o~ 5 =0, 160495 — 2 = 0.

o' =362 ~ 62 — 2 = 0. 8. 25 ~ 40z — 100 = 0.

AN
116, Transformation M\Q:li;ninish the roots of an equation
Y o fixed ambunt.

In order to devélap a more systematic but more techni-
cal method of .;fiirding irrational roots of integral rational
Eﬂtla-tion.s, jt\zig}iecessa.ryr t0 be able to transform an equa-
tion into & Tew equation whose roots are less, by a given
amoﬂl}k;" than those of the original equation.

{UEpose that the original equation is

F@) = a2 + a@mt oo b @z +a, =0 (1)

W we replace 2 by &’ + h, we get a new equation in 2’, and
% =risaroot of the original cquation, then &’ =r — &

I be & 100t of the transformed equation. That is, each

tEOt of the new equation will be less by an amount  than
® Corresponding root of the old equation.
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Setting x = ! + hin (1) we get

ao(e’ + B+ @+ Byt 4
+ 1 (-'E’ + h) + Op = 0) (2)
or Gr™ + A A3 A, =00 (3)

We can determine the 4's by the artifice of changing kek
to (1) again by setting 2’ = 2 — 4 in (3). Th,is\gives

ao(x — ) + Ay(z — by 4+ ... O
+ Az — h) Ay =0, @

which is merely f(z) arranged in pmvemp}% — h.

It will be noted that 4, is the remaidder if f(z) is diw.ded
by © — h, A, is the remainder J;f’}he resulting quotient
is divided by 2 — h, and 50 onas

Example. Y g

Find an equation whnsx{fi:dbts are less by 3 than those of

ot = 528 4 200 ~ 16 = @3

Sowymon.  1&B+ 042016 (3

> 8- 6-184+ 6
R 6+ 2 10

N\
L >

3+ 3— 9

s.\l
I+1- 3- 7
E»{? 3 4 19]
A T4t 9
\ 3
~\D 1+7

The transformed equation is
' TR 0 Ty — 10 = 0.

EXERCISE

Check the result by verifying that the roots of the original

equation are —2, 1, 2, 4 and those of the transformed equs~
tion —5, —2, —1, 1.
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EXERCISES XiH. H

Obtain cquations whose roots are equal to the roots of the
following equalions diminished by the number indicated:

lLgp =32+ 224+4=0,1,

%P — Tt —z 43 =02

3ttt dr—1=10, =2

4, 20% - B2 4 Tx — 2 =0, 3. X
5. d0° +120% + 52 — 3 =0, — L. A
8. 328 — 3622 — 144x — 199 = {, 4. A7
T, 2 — 52 — b6z — 7 = 0,02, AN 3

8" —2t+3x— 5 =0, % A S

9 \/

Lt — 202% 4 50z 3 75z + 100 = 0, 5.
, Bt 4 1923 2522 x4 =0, —1. \\J’
117. Homer's method. \ '

This method of finding an irratipgzalfroot of an integral
rational equation js best explainediby means of an cxample.

N
X N

[
=1

Example. N\

Find an trrational root L:)f,\”\
f@yer o —5=0 (1)

By synthetic d,iv’rgié:)"r; (or by substitution) we find f{1) = —3,
f{2) = 5. Thysyf(z) has aroot between 1 and 2. Transform (1)
into an e m&féu whose roots are less by 1 than those of (1), so

jugt
that the péw equation will have a root between 0 and 1:
‘u\ o

~O 1+0+1=5 (1
\/ 1+1+2

R
_1+2
L
1
1+3
The transformed equation is

file) = 28 4+ 38 +4n, —3 =0 (2)

Nl
e



R\ 1 4+ 4.51 + 7.7951
0.01 4 0.0452
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When 2, is small, 2] is small and we can get a faiily good approx-
imation to the root of (2) by solving the quadratic equation
307 + 4x — 3 = 0, getting z, = 0.5+, {The positive root is the
only one considered.) By synthetic division, we find f1(0.6)
= 0.696, f1{0.5) = —0.125. 'The fundamental principle which
must be kept in mind is that if f(a) and f(5) have opposite sign{,
there is a root of f(z) = 0 between a and b. \

Transform (2) into an equation whose roots are less by 0,5:

N

1430+ 400 ~3.000 (05

0.5+ 175+ 2816~ N
14354575/~ 0126 ~\"

0.5 + 2.00] v
1404775 )
05 A"
1445 ’

The transformed equation is, S )
fle) = o 853 + 7755 — 0125 =0..  (3)

To get an approﬁ;ﬁifa}ion to the root of (3), neglect o3 -+ 4.52;
and set 7.75m 0.125 = 0, getting z — 0.016. We find
F(0.02) = 0.031808, £(0.01) = —0.047049.
Tra,nsfqttr'[a A3) into an eguation whose roots ave less by 0.01:
A\
\"\ 1 +4.50 + 7.7500 — 0.125000 (0.01
N\ 0.01 + 0.0451 + 0.077951

— 0.047049

14 4.52‘+ 7.8403

+ S
\

0.01
14453

The next transformed equation is
Ja(es) = 23 + 4.532% + 7.84030s — 0.047049 = 0. (&)
Setting 7.8403z; — 0.047049 = 0, we get x5 = 0.0060.
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The root of f{z) = 0 is

& =14 054 0.01 4 0.0060 = 1.5160.

This i certainly correet to two decimal places and very probably
to three.  The work can be continued further if desired.
The solution may be compactly exhibited as follows:

1+04+1 -5 (1 - £\
14+1+2 ’

1+1 42/~ 3 0
1 +2 o\
1+2‘+4 \M
i N

- ¢

14304400 —3.000 (05 3richda — 3 = 0,
054175 42875 = - O 71 = 0.5.
14354 575/— 0.125 N\
__ 05+ 2,00
L4404 7.76 )
0.5 <

—

o\ .
14450 -+ 7.7500 — 0.1@000 (0.01 7.753, — 0.125 = 0,
0.01 4 0.0451 -170})77951 7z = 0.016.

1+4.51 + 7.7951]2°0.047049
0.01 + o.oggf: '

14 4.52' + %8403 7.84032; — 0.047040 = 0,
001] AN 25 = 0.0060.

—_—

L4453 x = 1.5160.
= _

QC} j“itld a negative root of f(z) = 0 by Horner’s method,
find the corresponding positive root of f(—z) =0 and
Prefix a minug sign. ' :

118, Suggestions for finding the real roots of a numerical
equation.

Obtein as mach information as possible about the noture
€ raots from Descartes’ rule of signs. '
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ERemove all rational rocts, depressing the equation each time
that such a root is removed.

Always take advantage of any information revealed about
upper and lower bounds for the rools while looking for either
rational or trrational roots.

After all rational roots have been removed find the irrational
roots of the depressed equation by the method of sectton
or by Horner's method. O\

If it 13 possible to reduce the equation to a quadiddic equa-
tion, the solution can be completed by solving thisguadratic.

Negative roots are usually best found by so@{ﬂg fl—x} =0

EXERCISES XHI, _Q }

Yind, correct to three demmal pﬁzces, all of the real roots of
the following equations:

R

1L2°+2—5=0. N2 2242045 =0,

8. &% 4+ 602 + 137 + 14 =00 4 2* — 30° + 4w — 5 =0,
S, 08 ~5r—3 =0 " 6. 28— Ox2 L 24z — 17 =0
7. 203+ 622 + 120 4431 = 0. 8. 3¢ — 15z + 21z — 11 = 0.
9. 2t — Tx? + 17425 272 -+ 28 = (.

0.3x4+2x3+\3§2 10z — 8 =0.

11, 122* — 762% + 7322 4+ 41z — 30 =0,
12, 5% — Ba¥A~ 62 + 10w + 56 =

13. 362642 — 3522 4 3x + 6 = 0

14, €3 1523 ~ 1662 -+ 472 + 140 = Q.
16{ 42t + 202° + 322 — 34p — 7 = 0.

~16 7% + 2z* 4 8x* + 2022 + 5 = 0.

17 Bdatdz 41 =0
18, &5 — 2 — Bx3 - 222 + 15 = 0.

Extract the following roots, correct to three decimal places;
by using Horner’s method or the method of section 115:

19, V/50.

Svaeesrion. Find the real root of the equation z* = 50.

20, V17. 21, V3. 22, V113.
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Solve the following simultaneous equations:

2. 22y =11, 24, xt + y* = 337,
z+yt="T. z+y=1L

26. The edges of a rectangular box are 4, 6, and 10 inches, respec-
tively, What equal increase of each dimension will increase
the volume 100 cubic inches?

26. A sphere of radius v and specific gravity s, when floating i i
water, will sink to & depth z, which is a positive root of the”
equation z° — 3rz® + 4r% = 0. Find the depth to Whleh a
ball of radius 3 inches will sink if it is made of:fa) deork
(specific gravity 0.24), (b) whitc pine (specific grs\wty 0.45).

21. The edge of one cube is 4 inches longer thandhat/of another.
The combined volume of the two cubes i s 1{)00 cubic inches.
I‘Ind the edge of cach.

2. A box with open top is to be constm\c‘{;ea~ from & rectangular
sheet of cardboard 12 by 20 mches by eutting equal sguares
from the corners and bending up. %he sides and ends.  If the
volume of the box ig to he 200 aitbic inches, 38
what is the side of the square that must ==
be cut out? &

2. The height of a right_ bcular cylinder is 3

inches greater tham \he diameter of its base.

Its . volume 1s 5{30 cubic inches. ~ Tind its

dimensions, A

A rectangiilar box is 5 feet long and 3 feet

wide. \A. oard 1 foot in width is fitted into

the Bottom of the box in the position shown _—
iu~F1'g 34. Find the length of the board. '

) The following cubic equations arose in designing reinforced
concrete beams under bending and axial loads. The quan-
tity x is the distance from the upper surface of the beam to the
so-called neutral plane. Find the value of x correct to three

decimal places.

3L 2% — 0.1629z2 + 0.1960z — 0.1276 = 0.
32 % + 0.000922 + 0.11202 — 0.0904 = 0.
33, 22 — 0.256222 + 0.1140z — 0.1020 = 0.
M. 2 — 32612 + 0.1084x — 0.1024 = 0.

A 5ft.

30,
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38, x° — 0.774322 + 0.1364z — 0.1203 = 0
36. 23 — 0.326722 + 0.1042¢ — 0.0989 = 0,
37, ©* — 0397222 4+ 0.1019z — 0.0991 = 0
38, 2° -~ 0.8307z% + 0.1258z — 0.1240 = 0.
39, 2% — 0.30482 + 0.1018z — 0.0965 = 0.
40. =* — 0.3723z2 4 0.0961z — 0.0936 = 0.
g R
119. The general cubic. OV
- The general cubic equation is O
04(}173 + (111172 -+ s -+ g = 0, ,aﬁt#b: (1)
or o\
2 42 +oex +d =N 2)
ANY;
. h_ 0,'\
where R
b=", =2 g-=%, 3)
a0 S ao
Set O
b
\ =y — 2, 4)
e Ty 3
a\
and (2) becofnes
\NO
| o ¥ +C0y+D =0, -6)
. \C
in.}o’gﬁéh
:"\’.’;' | 2 A
”\:“' C=C—£ D=d_§f _— (6)
3’ 3 _+ 27

Equation (5) is called the reduced cubic.

"o solve the reduced cubic we introduce two unl_mOWnss'
% and v, whose sum is to be a root of the reduced cubic; that

is, we set

Y =1u-Fuw

@
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and substitute in (5). The resulting equation may be
placed in the form

w4+t BGur 4+ Ci w0y +D=0. &)

Since we have substiituted two unknowns, % and v, for
the single unknown y, we can Impose a condition on them.\

N

If we impose the condition <O
\\ “
3uv + € =0, ,.,’}:"/(9)

equation (8) reduces to the simpler form \.m:\ v

N’

WA+ D=0 N (10)
. R
Solving (9) for v and substitutlng‘ ' (10), we obtain
s . 5 =0, 1
° 27 N -,},, (11)
or
«a{u e -2 =0 (12)

This iy a qu@y&fic in %*, and we find

i“\'” _,__,v. —_— .
R S e T ) (13)
=N 2 2
A

W = — 22 +% VDE + 40927, (14)

We find from (10) that

fe 2 1 VD? I 4021 (15)
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D 1
Nor. If we take w’ = — - — 5___\(D2_+ 1C%/27, we find

D 1 . .
that ¥ = — 5 —I—av DE 4 40%/27; ie., % and » have simply

been interchanged. 'This is to be expected, since they enter Sy~
metrically into the various equations such as (7), (8), and (9}, ~

There are three cube roots of (14) and three cubé ¥dots
of (15). They can be found by the methods of soCtion 101,
Let U and V be cube roots of (14) and (15 p~xespectively
which satisfy condition (9), namely, 3UYV»= ~C. The
other cube roots of (14) are wU' and «Af%> and the other
cube roots of (15) are vV and «*V, whére w and «* are the
imaginary cube roots of 1 (see exerc;\ie%} 1. E, 23), namely,

1 d AV 1 i g
w = > b 2 \/5, "’:’" W = 5 5 V3.

These roots may be pa-igeéﬁ:g satisfv (9) as follows:
3wl V&0, 3.2V .0V = ~C.

If these pairs\éf‘{;alues are substituted in (7), we obtain,
for the rootg©F the reduced cubie,
A/
Vi=BtV, g =l + &V, gy = U V. (16)
'"\Q~

Mﬂg use of (4) and (3), we find for the roots of (1},

»

H=U4V - —

1 + 3«0’

Xy = ol + &’V — _a_l_, (17)
' 3a,

X = o™V + oV — 22
3a,

These expressions for the roots of a cubic are cailed Cardan’s
formulas.



7119] THE GENERAL CUBIC DTS

Example 1.
Solve the equation z? + 3x% + 15z +1 = 0. ' '(Ig)
SoLuTioN. Set 2 =y — 1 -(19)
¥+ 12y — 12 = 0. (20). o\
- ; : Sy

Bety = u -+ v In (20): \\\ 4
Wbt + Gue 12w+ o) — 12 =0. ,\4?; (21)

Impose the condition .\{‘\f\{’
Buw +12=0, or w =\‘;:}4,; (22)
reducing (21) to w4t — 12 = 0 \ (23)

Eliminate » between (22) and (23)‘.'313':‘

ut — 12uf‘j§;"‘6& = 0. (24)
~ u3 = 16. (25)
From (22), >\ = —4, (26)
Take v = 362 2«“/5, V= —Vi 27)

These values sa,t-i{{f;;r"'(22}

i
y]_ == 2@{&— \/_ ‘y&‘_ w2'\/§ — w2 v 4, ya = w22“y§ - w\/i;
ml._z\<2\ 4—1, 332:0,2\3/5,_“;2\’/:1—1,
Ty = w2V2 — Vi — 1.

\ 3
\ Exampfe 2.
Solve the equation z* — 12z — 8 = 0. (28)
SorLuTioN. Set x = u 4 v in (28):

W B — 12)(w o) —~8=0 (20}
Impose the eondition '

3uww —12=0, or uy = 4, (30)
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/

m&u.cing (29) to
w R — 8 =0, (31)

" Eliminate » between (30) and (31):

— 8u® + 64 = 0. a2
=4 4 4V3.{ = 8 ¢is 60°. L\ 133}
From (30), v3 =4—4V3.i=8ds (—60°. O (34)

- As cube roots of (33) and (34) respectively také R

\
U=2¢cs20°, V =2c¢id ( £20°), (35)
: \,
~ These values satisfy (30). \ O

U+V—4cos20°—3759
= ol + oV = 2 cis 140°+2cls220°'
=_ —4 cos 40° = —-3. 064
T = 0V + 0V = 2018260°+2CIS 100°
= —4 ¢cos 80° = —Q695

120. The gene}cﬁ quurhc
The general quartic, or fourth-degree equation is
»\;\ aﬂx + 01:173 + azxz + (123 + dy = 0 (1)
or\\‘w 2t + b2 4 ex? + da + e = 0. 2)

e X The first step in the solution of (2) is to write it in the
\\ form

2+ baf = —ca? — i — e t)

Complete the square of the left side by adding b%?/4 to
both sides:

x4+bx3+b2$ _(%2_ )xz_dx'_g, @
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We now infroduce a number , whose value is to be deter-

mined later, and add (x2 + Ei;) ¥y + %Zto both sides of (4),

getting .
b\ bx 1 |
i et 2 3 <. ¢
( +2)+($+2)y+4 N
_(¥_ by _ ¥,
__(4 c-i-y):c —}—(2 d):c—l— 1 ’e;.\ﬁﬁ)

T
%

The right member of (5) is quadratic in = auei'v(rill be a
perfect square if its discriminant is zero, thats; if

x’\\"

(-0 -2 -0 o

»,'

Equation (6) simplifies into* . «\
P — e + (bd — de)y — Ve 4o — & =0.  (7)
AN

We now determjrie{'g}‘é:o that (7) will be satisfied; that is,
we find a root of“the cubic (7). . Let this root be y = 7.
Substitute it in @), whose right side will then be the square
of some lme,&l 4unction, pz + ¢. Bguation (5) will then
have the\qm

&l
N

3 2
O (B - ®

\‘;

from which we get

x2+ +—-—:I:(px+9) )

The two quadratic equations in (9) can be solved by the

* Equation (7} is ealled the resolvent cubic for (1), or (2)
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quadratic formula or otherwise, yielding altogether four
roots.

It can be shown that no matter which one of the three
roots of (7) is used, the final results will be the sanze.

The foregoing method is due to Ferrari.

Example. N

Solve the equation A
Pt~ 12e+3=0. O (0
N
' mj\""
Tt — 45t = —do? + 127 Q)

SoLUTION.

Add 452 to both sides: \x\\\”
2t~ 428 4 42 =I§a: - 3.

3
’N

2 N
Add (22 — 22)y + Z— to bothsides:

N - 2 2 .
@B @ -2+ = -y + L 123,

§ :
(932—*:2$+g =yr?—2(y — )z +%'~3- (11)

N/
2

s
N

Equate toZero the discriminant of the right side;
"\‘~
. \k; R
4.\\ 4y — 6)2 — 4y (;i — 3) =,
~O™ ¥~ 45 + 36y — 144 = 0,

The roots of this last equation are 4, 6.
Set y = 41in (11);

(@ — 22 + 2)2 = 42 . 4y - 1,
B =2+ 2=20 41, 2t =2 4+ 2 = —2r+1)
$2—4$+1=0, -_- x23—3,
€ =24V3, z = +iV3.
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EXERCISES Xiit. J

Solve:

La?—0z-—12 =0, 2 2 — 122420 = Q.

ot — 024 =0, 4, 2* + 92?2+ 362128 = (.

.25 —822— 125 — 16 = 0. 6. 2% -3z — V2 =0,

Toadw 922 3212 — 5 =0. 8. 27 — 3z — 144z — 2304 =0,

9. z¢ -+ 8x® 4 2022 + 16z — 21 = 0. N\

10, 2t — 6% + 722 46z — 2 = (. by

I 2t — 42® + 522 — 16z + 4

12, 2% 4 22% — 2022 — 6z + 3

13 2t +62® — 26z + 15 = 0.

W 2t + 42% + 322 — 147 — 9 = 0. N

15. A wall 4 feet, high is parallel to, and at a’distance of 4 feet
from, the face of a building. A ladde'gag feet long is leaned
against the face of the building andv5 placed in such a posi-
tion that it just touches the tapiof the wall. How high up
the building does it reach? ¢ {1t is assumed that the ground
is level and that the Jadders'in a vertical plane which is per-
pendicular to the face c{‘%he building.}

s
27
S 3

0. ‘
0. RY

I

& _
121, Algebraic solution of equations.
The solutiopis@f an integral rational equation,
N
\Q'u;\nﬁ' + a;:n”'_l + tan ‘Jr“ G + Oy = 0} (1)

Vo
are fmctions of the coefficients. If these functions involve
?C’Pemtions other than a finite number of additions, sub-

actions, multiplications, divisions, and extractions . of
Toots, the solution is algebraic.

We have already obtained algebraic solutions of the
general quadratie, cubic, and quartic (» = 2, 3, 4, respec-
tively, in (1)), and it might be surmised that the general
€quation of any degree could be similarly solved. However,
1 ¢an be proved that the general equation of degree higher
than four has no algebraic solution.
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If ry, 7a, ++», Ta are the roots of an equation, then the
equation may be written

@—r)@ =) (@—r) =0 (1)
Multiplying out, we get O
™ — (r Fre 4 e \‘\

T e L T A R (X =40 -
o (ryats b TagTaatR)T 0 e ,~: 3
4 (=1)riry e o7 =0, ¢ @

Comparing (2) with the form Y
feiid + b;xﬁ_l "{“ 523:1;—2 + ngﬂ_a '{; ":‘f\‘ + bn,_lfﬂ + bﬂ. = O, (3)

"'0
N

we see that
by = —sum of Toofs)S
by = sum of products of roois taken Lo al a time,
by = —sumg of\products of roots laken three al o fme,

..........................................
N

by = (—\Q“ X product of rools.

N . .. .
%‘b!}e equation is given in the form
A
.“:'z\ ax® + @t + agr e+ =0, @
...\‘,
-m\~ W . '
. it is merely necessary to divide through by ao t0 reduce I
to the form (3).2

EXERCISES XIil. K
Find the sum of the roots and the product of the roots of the
following equations:

Lo2®+62° + 4o+ 5=0.
2 3% — 222 — 4x 49 = (,
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0 ;oo e

) :‘-"

10.
1L

12,

13
14,
16,
18,

7.

18,

6zt — Ot —dx® — Te +12 =0,

3xt 4+ 522 — 17z — 80 = 0.

@ Azt + 307 4 222 + 8z + 9 = 0.

dxf — 205 + T2 —2z — 1 =0,

bt = 30+ et = do + 4 = O,

Sclve the equation z® — 52% 4 kz + 36 = 0, given that the
sum of two of its roots is 3.  What must be the value of k?
Solve the equation 222 — 2522 + kx + 132 = 0, given thab
the product of two of fts roots is 44.  Find the value of k.-
Selve the equation 32 + 42 + kr — 9 = 0, given thaﬁ one
root is the negative of another. Find k. O3
Solve the equation 923 — 632 4+ kz — 8 = 0, g‘Qren that it
hasadoubleroot., Find k.

Bolve the equation Bz® 4 kx? -+ 16z — 10540, given that
two of its roots are the negative reci s of each other.
Find %.

Solve the cquation 12x* - 423 c:r} + dz + 75 = 0, given
that it has two double roots. ]i‘tnd ¢ and 4.

Bolve the equation 2t — 1252 + ca? + dz + 121 = 0, given
that it has an imaginary defible root. Find ¢and d.

Solve the equation 6z 2123 + 20x2 4 dz 4- ¢ = 0, given
that it has a triple ropty Find d ande.

Solve ihe equatwsk\sn:" + kx? + Bz 4- 12 = 0, given that the -

Jsum of two of isrocts iz 7. Find k.
‘Show that if the cquation 2 + e + d = 0 has a double root,

then (g 3\ (5) = 0, and conversely.

Shof\that if the cquation @ -+ be? +cz+d =0 has a

A\ ; s
~ ¢hiple root, then d = (—z) , and conversely.
\ )|

Q.



CHAPTER XIV

Logarithms

N

Ay,
123. Logarithm. O

The logarithm of a number to a given base is the'exponent
of the power to which the base must be ralged to give the
number. (It is assumed that the base isjpositive and differ-
ent from 1, and that the number is po\sltn«e .} Thus, since
2% = 8, the exponent 3 is the iogar&hm of 8 to the base 2.
This may be written in the fopa8 =log, 8. More gen-
erally, if N = ¥, we write z 2 logb N.

The base in most common, use is 10. Sinee, for example,
10% = 100, we have log;, 400 = 2. As the next few sections
deal with logarithms te.the base 10, we shall, for the present,
omit the subscrlpt m\dlcatmcr that 10 is the base, and write
simply log 100 ﬁ\z’

Similarly, 1057 = 0.01, and we have log 0.01 = —2.

Thus, welcan construct the following table, which shows
both th&‘exponentlal and the logarithmic form of writing

the sgtig\e relation.
N 10° = 1000, log 1000 = 3;
~ Yy 102 = 100, log 100 = 2;
N/ 10t = 10, log 10 = 1;
10°= 1, log 1 =0;
100t = 0.1, log 0.1 =-1;
102 = 0.1, log 0.01 = —2;
1% = 0,001, log 0.001 = —~38.

Further, since 10”2 vV 0 we have log V10 = § =
Likewise, log v/10 =
298
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However, there is no rational number z for which 10° = 3,
for example, and we have not yet defined a* for irrational
values of z. 'We assume that when & is an irrational num-
ber, and a is positive and greater than 1, ¢* is a number
which is greater than a¥ and less than a?, where y and z
are rational numbers which are respectively less than and
greater than x. That is,*

AN
o < a” <a°, where y<z<oz NN

L W

We make the further assumption that as y and z are. taken
closer and closer to z, ¢? and ¢* assume valueg(hich are
closer and closer together. In fact we definou™as the com-
mon limit of a* and o, as y and 2 appreach z through
sequences of rational values. With theféregoing assump-
tions, we may write the approximatevelation

1009771 3, or ~flb£§ 3 = 0.4771.

This means that the four-digit' number which is closest to
log 3 is 0.4771, just ashe four-digit number which is
closest to V2 is 1,414)" The method of obtaining this
approximation to o involves more advanced mathe-
- Mmatics than the familiar method of extracting square roots
used in findi ':1}7’18 approximation to \/5, and will not be
explained_heré.

’\ -
124. Mantissa.
.:Ii}xj)féssing the relation 1042 = /10 = 2.154 in logarith-

¢form, we have (approximately of course}

log 2.154 = - = 0.3333.

o —

If we take the relation

10°%%%8 — 9,154 (1)
‘o< <1, then a¥ > a% > ¢, where y < z < 2.
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and multiply both sides by 10, we get
1005 = 21,54
which in logarithmic notation is

log 21.54 = 1.3333.

N\
By dividing both sides of (1) by 10 we get Oy
7N\ *
1075551 = 92154, N
or * log 0.2154 = 0.3333 — 1. /)
AN

These two examples illustrate the fundamental principle:
For numbers having the same sequence ofdigits, such as 2.154,
215.4, 0.002,154, the decimal part.gfithe logarithm {called the
mantissa) is the same.f The ngethod of finding the man-
tissa from tables will be given il a later seetion.

C XY

125. Characteristic,

The whole-numbex" pé,i‘t of the logarithm is called the
characteristic, 'I,‘hjl&, sinee log 21,54 = 1.3333, the charac-
teristic of the logarithm of 21.54 is 1.

We know that
%
A () 10t = 10,
or ()" logl =0, log10 =1.
RPN

,\.f Thus, logarithms of numbers between 1 and 10, such as
‘:: 2.154, have the characteristic0. For such numbers we shall
say that the decimal point is in standard position, namely,
immediately after the first non-zero digit.
Each time we multiply a number by 10 we move the
decimal point one place to the right, and each time We

* This could also be written log 0.2154 = —0.6667, but it is usually more

convenient t0 keep the decimal part of a logarithm positive, (But 5ee 8¢
tion 129, example 4.}

1 Provided that the base is 10.
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divide » number by 10 we move the point one place to the
left. Dut each time we multiply by 10 we increase the
logarithm of the number by 1, and each time we divide g
number by 10 we decrease its logarithm by 1, as was seen
in the illustration above. Thus, we may state the following
rule for finding characteristics: : ~

If o number has s decimal point in stendard postiion,
{ie., after the first non-zero digit), the characteristic of gb\ké~,\
logarithn of the number is zero; +f the decimal point is \nbt
in standord, position, the characteristic is equal to the @itmber
of places the point has been, moved, and is positive § the point
has been moved Lo the right, negative if it hasbeen moved fo
the left. _ D)

For example, in the number 78,460, the' decimal point
bas been moved from standard position{@fter the 7) 4 places
to the right (after the 0), and the characteristic of the loga-
rithm of 78,460 is thevefore 4. o _ '

In the number 0.02154, the peoint has been moved from
standard position (after the'®) 2 places to the left. The
characteristic of the logatithm of the number is —2. In
fact, since wo saw ak@i@ that log 2.154 = 0.3333, we may
write N _ -

\1ag 0.02154 ~ 0.3333 — 2.
This mil)i.@;j: i)e written
J?%@mm =83333 — 10  (since 8 — 10 = —2),
a\ﬁ);m frequently used. Another forrc; is
log 0.02154 = 2.3333

.(noz —2.3333, as this would mean that the entire logarithm
18 legative, whereas only the characteristic is negative,
hl.s being indicated by the minus sign above the charac-
teristic).  Thig form is not recommended.
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The rule given for determining the characteristic also
tells us how to point off a number corresponding to a given
logarithm. (The nuroher corresponding to a logarithm is
called the antilogarithm.)

Thus, if we have given

log N = 2.3333, \

N

KO
we know from the illustration used above that Ale num-
ber N is composed of the sequence of dlgltb 2154 Since
the characteristic is 2, the decimal point has béen moved
2 places to the right from standard pqsmon Therefore

N = 2154,

EXERCISES RpV. A
Determine the characte%iéﬁic of the legarithm of.

1. 328.4. 2,418.96. 3. 13000.
4. 3.982. 8. 0.5623. 6. 0.00843.
7. 69470, ;«}\ 8. 747000, 9, 0.000,3124.
10. 27, \\ 11, 27.83. 12, 2.7
13. 0.0015. A 14, 3. 15. 3.000.
16. 4004. \ 17. 4.004. 18. 0.000003.
19. 000({ 20. 1.0008. 21. 80.00,
22, 05,0 23. 0.5000. 24, 0.000,000,5.
N, | »
A\ Givenlog7.28 = 0.8621; find the value of z for which
L (25, log z = 2.8621. 96, log = — 1.8621.
Y T2T. log v = 0.8621 — 2. 28, log z = 9.8621 — 10
29. log » = 4.8621. 30. log & = 4.8621 — 10-
3L log x = 0.8621 — 4. 32. log x = 3.8621.
Givenlog 423 = 2.6263; find the value of » for which
33. log z = 0.6263. 34, log « = 0.6263 — 1.
36. log » = 8.6263 — 10. 36, log z = 5.6263.
37. log z = 5.6263 — 10, 38. log z = 0.6263 — 5.

39, log s = 10.6263 — 10. 40. log x = 7.6263 — 10.
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196. Finding the mantissa.

Tables of logarithms give mantissas (decimal point omit-
ted), They are called four-place tables, five-place tables,
end so0 on, according to the number of digits in the man-
tissas.  Table IT at the end of the book is a four-place table.
In it the first two digits of & number are found at the left
of the page, the third digit at the top, the corresponding,
mantissa being in the same row as the first two digits of the)
number, and in the same column as the third digit of ‘the
number. Thus, to find the mantissa of the logarithm of
132, we follow across the row which has 13 at the'left until
we come to the column headed by 2. In thidposition we
find the mantissa 1206. Since the characteristic of the
logarithm of 132 is 2, the complete lcagar'ﬂ:ﬁ'l 1s 2.1206,

To find, from Table I, the logarithat.of a four-digit num-
ber, we use a process called interpg}a'tién, fllustrated below.,

LR Y

Exampfe. .
Find log 13.26, ~

SoLurion, Find the m?m\tissas for the numbers next above and
below 13.26: X\

Mantissza
y {Decimal point cmitied)
13.30 . 123
1326 ? 3
13.20 120

Assuming that the change in the mantissa is proportional to the
thange in the number,* we have

T 0.06
33 010~ 0O

¥ =06 X33 = 10.8.

* L
This i only approximately true.
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When interpolating in a four-place table we retain only four digits
in the mantissa. Thus we add 20, not 19.8.
Mantissa = 1206 -+ 20 = 1226,

log 13.26 = 1.1226.

Once the principle of proportionality, or proportional partgeis
understood, the work can be arranged more compactly as follows,

or may be performed mentally. (\A
7N\S
13.30 ~ 1239 ~°
13.20 ~ 1206 o
—_— $
difference = 33 “\
X 0.6 \
19;?} ”
1200

log 13.26 = 1{12%6

"

(The symbol ~ may here he! vead ¢ corresponds to.”’)

To find, from T%Lﬁe {1, the logarithmn of & number com-
posed of more than four digits, we first round off the num-
ber to four digits. To round off 5 number to & digits {or
k figures, orplaces®) means to find the closest approxima-
tion to the mimber that can be written with & digits. For
examplefive know that, to five digits, = = 3.1416. Rounded
off ‘&:four digits, the approximation is 3.142, this being
clgser to the true value of # than 3.141, or any other four-

N [

~(digit number. The number 357,238, rounded off to four
N/ digits, becomes 357,200,  (See section 129.)

When the rounding-off process can lead to two numbers,
each equally close to the given number, we shall adopt the
arbitrary rule of choosing the one which ends in an even digil-

For example, 13.425 becomes 13.42, while 286.35 becomes
2864, :

* Not decimal places.
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EXERCISES XIV, B

1. Find log 20.17.
SoLUTLON. 29.20 ~ 4654
23.10 ~ 4639
difference = 15
x 0.7

o .
'\
Here we may add either 10 or 11 to 4639, Howevgr i a
situation of this kind, we follow the rule given above‘ana add
11, 50 us to make the resulting number even. Thus,

4639 \
\.&
11 L

log 29.17 = 14650 3N

Find the logarithm of cach of the. foll'ow:ng numbers:

2. 264, 3. 3. ,.:.;2' 4, 3.25.

8. 400. 6. 20, 3% 7. 0.632.

8. 0.00413. 9. 1,935, 10, 831.2.
11. 37.85. 12./6103. 13. 79870.
14. 0.5506. : 1@007393 16. 1004

17, 0.9997. N8 0.007093. 19. 8,881,000,
20. 549900. e 0.01001. 22. 0.9009.

127. Fin mg‘me antilogarithm.
The pr\ess of finding the number corresponding to a

g“’en\lﬂganthm is illustrated by the following examples:
\ Exampfe 1.
Find the number whose logarithm is 7.8414 — 10.
SovLuTion, The mantisga 8414 iz found In Table II. At the
left we find 69, at the top we find 4. Thus the number is 0.00694.
Example 2,
Given log N = 1.8418; find N..

N
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" SovvTion. Here we use inverse interpolation, finding the man-
tissas next above and next below 8418,

Mantissa Numiber
8420
6 —8418 O\
+ |
L —R414
A SRy 3\
176
N = 69.47. »"\"'

Nore. The process of wnterpolation, Nigtchuding inverse inder-
polation, is applicable to any kind of ﬁ{b&?, e.g., & table of square
roots, provided of course that théSalucs given in the table are
sufficiently close togethor. RO

<N
N
LR Y
e

EXERCISES XIV. C
¥ind the numper corresponding to cach of the following

logarithms: ¢ \’

1. 0.5485. A\ 2. 2.8404. 3. 9.3139 — 10,

4. 8.9390, £10. 5. 0.7782. 6. 1.8994.

T. 2.2236.) 8. 76700 — 10. 9. 3.8072.

10, 14143, 11. 1.5000. 12. 9.9998 — 10,

13,-0:0200. 14. 0.1020. 15. 0.0102.

16,2.0019. 17. 8.5369 — 10. 18. 5.845L.
19, 3.5350. 20. 0.3535. 21. 0.0353.
\‘;"22. 8.8750. 23. 77400 — 10, 24. 4.0255.

128. Laws of logarithms,

Since logarithms arc exponents, they obey the laws of
exponents, 1t being assumed that these laws hold for ira-
tional as well as rational exponents. Thus:

1. The logarithm of « product s equal o the sum of the
logarithms of its factors.
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Let log, = =z, loge N = y.
Then, M =t N =,
MN = bppv = p*te,
loge MN =z +y,

or log, MN = log, M + log, N.
The proof can easily be extended to cover the case of any . O\
finite number of factors. A
Example. O )
log (214 - 386) = log 214 + log 386. ~ .

1. The logarithm of a quotient is equal to ihgkogarithm
of the dividend minus the logarithm of the disor.
Using the same notation as above, we hf{\«é\

‘E{ _ E = bh*uN
N b v}‘.':‘“
IO B’I - _“’.:"w'
By T

Q
log, i—f\o\%ﬁng ~ log, N.
Example. \“
{\loggl—% = log 214 ~ log 386. -
\J 386
N
HI:‘Z‘% logarithm of a power of a number is equal to the
“xpaticitt of the power times the logarithm of the number.
logs N = z, then N = b, and

JN"m o (bx)m = bmz'
logs N™ = ma.
log, N™ = m log, N.
Example.

log (2.14)% = 3 log (2.14).
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IV. The lbogarithm of a veal positive rool of ¢ number is
equal to the logarithm of the number divided by the indeg of
the roof,

This is really the same as ITI, since VN = NU=, Thus,

m 1
log, VN = =~ log, N. ~
O
Example. . O
5 1 .‘n"‘
log ‘\/— = glog 3. \ :
Several of these laws may of course Qe‘ thvolved together.
7o \d
Example. N\
17.6(231)¢ - ) L
log ————== = log 17.6 + 3 log 2.31 — log 986 — 1 log 18.7,
986v/18.7 WO
log%fr? = lpg;.i. Flogw +3logr —log 3,
T o
Py & 1 AV
2 log ‘k‘-é log B + 3 log O = log T

129, Compﬁiﬁﬁon with logarithms. ,
The ..Qa\fhntages of logarithms in computation are that

mult%iﬁéation and division can be replaced by the simpler
operations of addition and subtraction respectively, and
. (that raising to powers and extracting roots can be replaced
) by multiplication and division. )

It must be realized thatlogarithms, with a few exceptions,
are approximations, and that results obtained by using them
are only approximate, Tt therefore seems advisable, before
illustrating their use in computation, to give & brief d'ls'
cussion of the aceuracy to be expected when operating with
approximate numbcrs.

The significant digits (or figures) in the decimal forn
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of a number arc the digits reading from left to right begin-
ning with the first non-zero digit and ending with the last
digit written. (But sce note below.) Observe that the
number of significant digits does not depend on the position
of the decimal point.

The approximate number 7.2 has two significant digits.

The number 7.20 has three significant digits. The trug™\,

value of the quantity which it represents is between 7.195
and 7.205, whereas the true value represented by the
approximate number 7.2 is between 7.15 and 7.25. (That is,
7.20 is a closer approximation than 7.2. In geberal, the
greater the numbcer of significant digits in ag approximate
number, the more accurate the number, N

Note. Final (s in a whole number may et may not be signifi-
cant. For exampie, if it is stated that the population of a town
18 15,000, it is impossible to tell whichvof the 0’s, if any, are sig-
nificant.  If the population is given to the nearest thousand, none
of them is; if it is given to the ritarest hundred, the first 0 is sig-
nificant, the other two are nih, (To indicate in. these two cases
which digits are signifi a.{t:vtre might write 15 - 10° and 150 - 102
fespectively.) C\ .

Results obtaindd by using approximate numbers are
usually no meére accurate than the least accurate number
entering ifito/the computation. By way of illustration,
SUppose thet the sides of a rectangle have been measured as
13'1 déet and 10.2 feet respectively. Multiplying the
%0 Mimensions together, we should find for the area
13974 square feet. However, not all of the figures in this
Tesult are accurate. For if we reeall the meanings of the
Pproximate numbers 13.7 and 10.2, we see that the actual
Wimher of square feet in the area may be between
13.65 % 10.15 = 138.5475 and 13.75 X 10.25 = 140.9-375.

herefore, to say that the area is 139.74 square feet 13 to
tlaim falge aceuracy. The number should be rounded off

o 140 (that is, to three significant digits, the number of

Q!



AN

3

240 _ LOGARITHMS {Ch. Xtv

such digits in each of the numbers multiplied together).
Even then, there may be an crror in the last digit.

A four-place table of logarithms is adapted to use with
numbers having four significant digits. In the following
examples and exerciscs in computation we shall assume
that any number with fewer than four places is exact, and
shall round off to four digits any numbers of grea'.te\r
aceuracy. (See section 126.) The results of computations
will be assumed to contain just four significant gigits, and
should be correspondingly rounded off. Ingether words,
results should be the best obtainable by usi\r{g interpolation

in Table I1.
A \J/
PN
Example 1. "
Find the value of z = 36.2 X 867
SOLUTION. loga{’:)‘é’?f = 1.5587

162 867 = 2.9380
AN logz = 4.4067
\

) z = 31390.
AN
Exampf\’é'?.:
Find/the value of z = 36.2 = 867.
e
”’.."SI‘)LUTION. log 36.2 = 1.6587

~ ) log 867 = 2.9380

~\J

Here we are subtracting the larger quantity from the sma]leré
In order fo keep the mantissa positive, we add 2 to, and subtrac
2 from, the logarithm of 36.2, getting

log 368.2 = 3.5587 — 2
log 867 = 2.9380
log = = 0.6207 — 2
z = (.04175.
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Some prefer to add and subtract 10 instead of 2; thus: |

log 36.2 = 11,5587 — 10
log 867 = 2.9380

logz = 86207 — 10

= (L.04175.
N
Example 3. Oy
' ~A
Find the value of z = (0.362)%. \
R
SovvTION. ¢O
O
log 0.362 = 0.5587 — 1 N
X 4 N
log z = 2.2348 — 4 = 02348 < 2
T = 0.01717. O
Example 4, “.:‘: N

S
.2

2
7

Find the value of x = {0. 3(32)34;:

Sorvrion. log 0.362 —ﬁ‘5§8f —1=-04413
& .
‘,’lt} logz = 1.7652
x'\“'
Examp’é\&
Find tehe cube root of 36.2
\é}UTION log 36.2 = 1.5587(+ 3
log V36.2 = 0.5196
V'36.2 = 3.308.
Example 6.

Find the eube root of 0.362.

SoLuTioN, log 0.362 = 0.5587 — 1.
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In order to make the negative part of the characteristic exactly
divisible by 3, add 2 and subtract 2:

log 0.362 = 2.5587 — 3(+ 3

log V0.362 = 0.8529 — 1
V0.362 = 0.7127.

O\
Example 7. O\
. 0.156(3.62) oY’
Find the value of & = ———=-
86.7V918 AN
SoLumioN, f‘:\"
log 3.62 = 0.5587 log 918 = 2.9628(+ 5
X3 Y 0%
1.6761 N Tog 88.7 = 19380

log 0.156 = 0.1931 —~ 1  log denominator = 2.5306
log numerator = 2.8692 — 2’
log dencminator = 2.5306, N
log ¢ = 0.3386 2
z = 002181.
N

Nore. Ing fh‘&)iem such as this it is a good plan to make an
outline before proceeding with the actual computation. '

%
E@\ii:jsfé 8.
A\ 0.156(—3.62)*
Xihd the value of — .
A\ —86.7v 018

SoLvtion. We treat the example as if all numbers involved
were positive, and then prefix the proper sign to the result. Here
we have symbolicaily

e
__.\‘/—:__.__“ :

The actual logarithmic work would be precisely like that n
example 7; the final result however would be —0.02181.
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130. Cologarithm.

The logarithm of the reciprocal of a number iz called
the cologarithm of the number and is abbreviated colog.
That ig,

colog N = 10g§—r =log 1 —Ilog N = —log N.

Thus, the cologarithm of ¢ number is the negalive of tfz-e\:§
logarithm of the number. Consequently, in solving a préb*
lem in division by means of logarithms we may eithei sub-
tract the logarithm of the divisor or add its coI({ga}rithm.
There is no udvantage, but rather a disadvantdge) in using
the eologarithm when only two numbers are Wvolved in a
division problem. There is, however, gothe advantage,
particularly in the arrangement of thegohition, when more
than one number occurs in the denomisator of a fractional
expression, R\ \\

The Cologa.rit.h]n is thainqd."bs/' ﬁndmg the loga,rithm
and subtracting it from log 1,"that is, from 10 — 10, which
5 of course 0. This caf ‘be done mentally affer some
Practice. \\"

Exampfes.

N\ _
log 30.1 = 144786, log 0.0375 = 8.5740 — 10,
colog 30-1\«*—\8.5214 —10. | ecolog 0.0375 = 1.4260.

A _
The folloghing example illustrates the use of cologarithms:

R
“Example.
.
Find the value of z — ——Uoor .

e value of x 301 > 0.0375
SoLuTioN, log 0.584 = §.7664 — 10

colog 30.1 = 8.5214 — 10

colog 0.03756 = 1.4260
log z = 19.7138 — 20
z = 0.5174.
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EXERCISES XIV. D

Find, by means of logarithms, the value of each of the

following expressions:

1. 125.0 X 54.43. 2. 3.262 X 0.7809.
3. 68.41 + 5.317. 4. 23.72 + 452.7.
5. 0.4506 X 0.06503. 6. 1658 X 1319.
7. 0.2183 + 0.9794. 8. 0.6026 -+ 0.03373.
9. 4.781 + 0.8693. 10. 6.604 + 3205. ¢\
11. 0.3521 + 0.04387. 12, 0.08908 -+ 0.5805()
13. 5.689 X 0.9987 X 60.53. 14. 0.2176 X 0.4308\% 1154,
15, 8891 X 5.277 16, 7423,
496.2 27.28 03964
53.62 X 9.248 0.3732X 7668
17, L 18.
882.1 X 0.9735 846D 0.01016
19. 41272 20,(0.5268):.
21, (0.06068)>. 22, 720.2(3.377)2
g3 1645 o, (03773)2
(8.552)2 N 4.586
3 2 2
g5, (T716)° ) g, 09-9(0.5428)*
(207.3)2 & (41.51)3
27. =(0.5037)2., . 28, £r(5.867)%,
29. v42.01. \ 30. V0.1386.
8. v 25.28~>,< 0.3143. 32, 7.261V0.01148,
V1780: 34. V0.3847.
V0. 2765
36, ———x
- V6513
N 37. 295.6V13.97 g5, 5636(0.7595)%
ESA C T V3183
~23.22(—0.456) 825.5(—0.3623)°
39‘ (—391.8)2 40. 1942
ap V07882 " V7135
" —8.838 ©—91.07
43, (1.005)~ 44, (0.9843)~2.
45. (1.004)7%, 46. (0.05196)—%7,
47. (3. 48, (3)—%~,
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., 4.‘53(3 ) 0. log 4.536_

17.92 log 17.92
5. log3 5. log 673.9

log 7 673.9
5 log 0. 6984 log 0.{}2436.

" log 4.777 " log 0.8856

88, log 37.94 X log 2.743. 56, log 1.807 X log 0.3071.
57, VIog 10.76. 58. Vlog 0.4521. O\
59, Find the area of a triangle whose base is 31.98 1nches and )

whose altitude is 12.12 inches.

60, ¥Find (a) the ecircumference and (b) the arca of a urde “hose
radius is 0.5428 inch. m\

8. Find the volume of a sphere whose radius 80274 inches.
(V = &a17)

62, What i3 the weight of & steel ball bearmg\ w?hlch is % of an
inch in diameter, if steel weighs 485 ;pounds per cubie foot?

63. Find the volume of a right circular gone “whose height is 88.34
centimeters and the radius of Whose base is 28.98 centimeters.

84, Neglceting air resistance, thed vﬁlomty, in feet per second,
acquired by an object in iallmg through o distance of s feet
is given by the formulg @'= V/2gs, in which g has the value
32.16 feet, per sccond ,Qer 'second. Find the velocity acquired
by an object in falling 1225 fect.

85. The period of a simple pendulum (the time in seconds required
for it to swi{{g’ahross and back) is given by the formula

\"\~ 2 J‘E
. =2 —3
N\ T i

ln’%dneh 1is the length in feet and g has the value given in the
_Dréceding exercise. Find the period of a pendutum 3 feet
9 inches long,

88, The ahsolute pressure P and the volume V of & given weight
of steam are connected by the approximate relation
Py = ¢, in whichk ¢ is a constant. Taking ¢ = 11480,
caleulate (a) the value of P when V = 38.42, (b) the value
of V when P = 135.7.

The abgolute presswre P and the absolufe temperature
T of a given weight of gas are connected by the equation
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TPI=B/% = ¢ in which & and ¢ are constants. Taking k=13
and ¢ = 288.1, calculate (1) the value of T corresponding to
P = 102.5, (b) the value of P corresponding to T = 830.6.

131. Exponential equations.

An exponential equation is one involving an unknown or
unknowns in an exponent, for example, 3 = 5 2o = 34,
Logarithms arc essential in the solution of such cquatiens.

R
Example 1. O

Solve the equation 3= = 5. N
Sovurion. Take logarithms of both sides;“'\' v
zlog 3 = log &, .

_logs  0.6990
log3 04T

= 1.4656-.

x

-

Example 2. R\
Solve the equation 3= - gfff“ = §2=H,
SoLurion, Take logarithms:

o\
zlog3 (85 — 1) log 2 = (2¢ + 1) log 6,
z (log 33 log 2 — 2 log 6) = log 6 + log 2,
8028
zzl‘aig; prai log 12,
\;z log 12 logi2  1.0792
AN\ 2 —loglb 0.1761
A\ \ log g

..\ &
e \

\V EXERCISES XIV. E
Solve:

1, 20 =920, 2. ke = 3,
3. 62 = 135. 4. 3= = 0.2540.
5. 3% = 350, 6. 2% = 15.
7. 5= = 10. . 8. 3= = 72.
9. 731 = 3. © 10, (11)re = 0.9232.
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11, 28eH. 52 = 7, 12, 37 245 = 4o
13, §7=. 5% = 204, 14, 2. 324 = 5. 755,
16. (L.03}* = 1.538. 16, (1.025)— = 0.8623.
aoz—-1_ - (Lo15) 5 ,
17, T = 62.61. _18.-___|——————~-0_m5 E_Lq_';'ﬁ‘;g_
19, o= = ¢ 20. o= = pr=tl. gtz
21, 87-2v = 17, 22, 5w .37 = ]
5.7y = 28, o 4=ty (1) = 8,
23, 7retr—h. 3w = 15 24, griul, Ofo—g—t 100, ‘
2=y Gt = 36, (12)=v-2. 53m2vt3 o g2 ()
2. 2% 3v = 24, 26. 222-3v = 19,
3. 2v = 18§, 4% 5w = 7, X \
oM oo = by, 2. a7 = beoy, NN
avty = ¢, ' a=th = pute,
A

132, Other bases than 10. R4S

In section 123 it was indicated that dther numbers than
10 could be used as bases for systems of logarithms. In
fact, any positive number cxeceptil can be used a3 a base.
We recall from the section.ust referred to that, since
2 =8, the logarithm of 8483 when 2 is the base; that is,
the logarithm is the p;xﬁ%r to which 2 must be raised to

produce 8. In abbretiated form we write

ST log, 8 =3,
the subscrig:ﬁ[ﬁﬁdicating the base. .

The exéPelses in the following set can be solved by first
i‘e“"ri"gi\ﬁg‘the equations in exponential form and then com-
Dleﬁglg'the solution either_'by inspection or by the method
ONection 131.

EXERCISES XiV. F

¥ind the value of z, given that
Lz =log, 32, 2 log, 9 =2 3 logpz=—4
£log, 49 < o, 5. logs 0.04 = z. 6. log. 5 = 0.5.
‘A log, 9 — 4. 8. z = logs 3. 9. logzz=T.

N

¢\

N



248 LOGARITHMS [Ch. X1V

10, logpsx = —6, 11, log 27 = =, 12. logw x = -2,

13, log, 81 = —4.  14. logv; 32 = z. 15, log,3.875 — —3.
16. 10@;3%—2 = . 17. IOg;gs,.’I) = '—'% 18. 10g, 64 = 4.

19, = logw V6.  20. log.4 = —%. 2L logyx = 1,

22, logy z = 0. 23. log, 1 = 0. 24, log,a = -2,

25, logy x = —3, 28. logy b = x. 27. logyz = b.

28, log.a = 0. 29, log.a = ~L.  30. log, Vb = ~
133. Common and natural logarithms. O\

Logarithms to the base 10 are called common, on Briggs-
ian, logarithms. Their prineipal advantages-are that the
characteristic is easily determined, and thag the mantissa is
the same for all numbers having the same@etuence of digits.
This is not the case for systems of logarithms employing
other bases. x\\

One very important system is¢that of natural, or hyper-
bolic, logarithms (also called Napierian logarithms), which
have as a base the number 3

e 2271898 - . .,

which can be foug;df{;o as close an approximation as desired
by takmg moré«and more terms of the serics

1 pdy Loy + ol
1

1
1.2 °1.2.3 1.2.3.4

AV
(Thgéymbol <+« is the symbol of continuation and may

‘ .\b’e’read “ and so on.”) The natural logarithm of « may be
~written log, «, although the notation In x for log, =, and Ig X
for logyg z, is sometimes employed.

Natural logarithms are extremely useful, as will be evi-
dent to the student who proceeds into the study of ealoulus
For example, they are needed in finding the length of the
path of a projectile, the amount of work done by an expand-
ing gas, the time required for a heated object to Cﬂf’l
to a given temperature, the time for a colony of bacteria
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to increase to a given size. In certain analytic work in
advanced mathematics they are indispensable,
134, Change of base.

It is frequently desirable to change from one base to
another.  This can be done as follows:

Lei x = log, N, y = logy N. : AN
. (NN
Then, a® =N, b =N, O
and a® = b, R N
L9
Teake logarithms to the base a: O

T =y log, b, ,x',\\';
W
or log, N = log, N - Jog/b. (1)
In particular, if we set N = q,{f&é have, since log,a = 1,

1= [og}f&t log, b,

or log, b F\}._l__ . (2)
c¢\Jlog, a

b\
<&

0"

To Chs\-\igé from a natural logarithm to a common loga~
tithim, e set @ = 10, b = e in (1), obtaining

~Jogio ¥ = log, N - logso ¢ = log, NV - logio 2.7183, |
4 log,, N = 0.4343 log, N. (3)

Inversely, we have

Example.

1
log; 8 = 3, 10g32=§‘

: i
Iogg N = ]Dgw N loge 10 = ]ogm N logm e’
o log, N = log N _ 5 3026 logye N. (4}

0.4343
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EXERCISES XIV. G
1. Find log; 75.3.

SorurioN. Let « = log; 75.3. Then 3¢ = 75.3, and tak-
ing common logarithms of both sides, we get

X lOgm3 = 10gm 753,

or 0.4771z = 1.8768, O\
from whieh it is found that ¢ \:\
N
T = 3.934. \*

The same result can be cbtained .b)i‘s'ett-ing a=3
N =753,b=101n (1).

2. Find log, 75.3. 7 \d
 Sovvmion. From {4} we ﬁndx\

log, 75.3 = 2.3026 400 75.3
= 2.3026 X 1.8768 = 4.3215.

Find: )
3. log: 5. <4 logs 2. 5. log. 5.
6. logse. \\ 7. log. 2. 8. logsop 1000.
9. log; 30. 10. log; 82. 11, logs, 25.
12, logi 20, ) 13. logy; 4.87. 14. logs 2.34.
15. log, 173y~ 18. log, 1.73. 17. log, 0.173.
18. logsat 19. log. V. 20, log, =°.

135\ iscellaneous equations.

PO Tn section 115 it was stated that the method given there
Jfor obtaining irrational roots of integral rational equations
could be applied to other typesof equations, Weshallapply
it here to a mixed equation containing both z and log 2.
Example, '

Find a root of the equation
fl&y=logas —z+2 =0.
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SorLurioN. First approximation:
0.3010
2 3 T = 2,
A X
' x ogx | f@x) |
0.5229 0.6229 1 0 1
2 | 03000 | 0.3010
3 0.4771 —0.5229
1 .\:\
Te. 35 In Fig. 35, O
by 0.3010 0.3010
- = = 3 kl = 0-4« 4
1 0.3010 + 0.5229 0.8239 PAN
Second approximation: Ny
N,
=2 =24, N/
1t 00817
gz | fix) RN
0.3617 | 0.0617 |\ A
0.3%02 | —0.0198, 0.0198 10.0198
. i\ 0.1
In Fig, 36, A\ Fio. 36
P 00188 0.0198 - _ 0.2
01 09198 + 00617  0.0815
xt\u’
. Third approximation:
-1:3:%_}&2:2'38'
l x log x Fix)
2.37 { 0.3747 | 0.0047
2.38 | 0.3766 | —0.003¢
' Fra, 37 In Fig. 37,
Jo 00034 00034 , oo

0.01 ~ 0.0032 + 0.0047  0.0081’

N
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Fourth approximation:
Xy = Uy = }Lg = 2.3758.

This is correct to five figures. Four-place tables do not permit

further advance. -
EXERCISES XIV. H &
A
Solve: ,,\"’)‘
. : §)

L 8logyzr—z =0, 2 2logunz += :\‘%

_1 _ )
3. logpez = ; . 4, logoz —@A

\
b. 32 = 3x- 6. 3 t:;\x?l}
€

T e =Vag 8.:1“@%10 z=2—a
9. 27 = 22, ,&0“.‘ Qe = logio 2.

10 t:{\:‘ —10
g, EF=)°~1 1.8 12 -4+ 4

z N z
&
:\
O
¢ \sol
oY



CHAPTER XV

Compound Interest and Annuities

136. Compound amount. & )

Interest is money paid for the use of borrowed motiey.
A sum of money placed at interest is called the pfrin‘(':ipal.
If the interest is added to the principal at the etids of equal
intervals of time the interest is said to be)compounded,
or to be converted info principal. The nterval of time is
called the conversion, or interest, peripéfx “This is usually &
year, half-year, or quarter. If no(eriod is stated it will
be understood to be a year. Thgsimi to which the principal
accumulates is ealled the compound amount, or simply the
amount. The rate is the int&rest paid on one unit of capital
for one period.  (In othef words, it is the ratio of the inter-
est, for one period, tozﬁa\e principal.) For example, a rate
of 3 per cent (i.e., per hundred) means that $3 per period
would be paid on$100, or $0.03 per period on $1. In prob-
lems it is bestNo write the rate as a decimal. In this ex-
ample the, inf‘e" would be written 0.03.

If intérest is compounded oftener than once a year, it is
custorary to quote the rate on an annual basis. For exam-
Dler@rate of 3 per cent compounded semiannually means

\gc‘tﬁa.lly a rate of 1% per cent for each half-year period.
Uch a rate is called a nominal rate of 3 per cent com-
bounded semiannually.

If P is the principal and r the rate, the interest due at
the end of the first period is Pr. The amount at the end of
the first period is P + Pr,or P(1 4 7). Itisseen that th.e
amount at the end of one period ean be obtained by multi-
Plying the principal P by (1 +7). For example, the

253

_——
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amount, at the end of one year, of $1000 at 3 ber cent is
$1000 X 1.03 = $1030.

The principal for the second period is P 47). The
amount at the end of the second period is found by multi-
plying this principal, P(1 + r), by (1-+7), getting
P+ 2

Similarly, the amount at the end of three periodsis
P+ )3, A

In general, the amount at the end of = periods i )

A=Pa+4)n O
S
For example, the amount of 31250 at 2 pér’cent for 3 years
is $1250(1.02)3, Y
137. Present valve.

The present value of a sumidf money due at a future date
is the principal which, invested at interest, will accumulate
to the specified sum at the'end of the time. It can be found
by solving for P in@quation (1) of the preceding section.
Thus, the present&alue of an amount A due in n periods,
when money ean\be invested at rate r is

O 4

A\ - < -7 1
P FraEy a0

Q™

Thus, if the interest rate is 4 per cent, the present value of
~$2500 to be paid 3 years hence is $2500 /(1.04)%.

" Problems in compound interest can best be solved by

means of tables of compound amounts and present values.

When no such tables are available logarithms may be

resorted to, although results will not ordinarily be very

accurate unless logarithms to a large number of places

are employed. Results to any desired degree of accuracy

can be obtained by using the binomial formula.



11371 PRESENT VALUE 955

Example 1.

Find the amount of $1000 at 497, interest compounded annually
for 5 years.

SoroTioN BY. COMPOUND AMOUNT TABLES,
§ 4 = P{1 4+ #)» = $1000(1.04)%,

In Table IIT at the back of the book we look in the columﬂ
headed 4%, and opposite n = 5 we find 1.2167. That i 1s, (Lﬁti}s
= 1.2167. Therefore, “s A
A = $1000 X 1.2167 = $1216.705)"

K7\

x\ w

A = F1000{1.04)5NV

log 1.04 = 0.0170 .\ .~

SOLUTION BY LOGARITAMS.

X5~.;
0.0350 |
log 1000 = 3~
log A = 3. D850

\Q\— $1216 (approximately}.

SoLuTiox BY, BINOMIAL FoRMULA.

(104) 11\ 04 + 2 4 3(004)3
i +5(004)+—(0 Y+ 150

1+D20+0016+000064+ . = 1.21664,
‘ —$1000><121664-—$121664

xﬁlﬂ is correct to within one cent, the accurate value being
$1216.65 to the ncarest cent. One more term of the binomial
formula would give this accurate value.

Example 2.

Find the present value of $1250 due in 3 years if the rate
of interest is 497,
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SoLuTiON BY PRESENT VALUE TaBLES.
P = Al 4+ 1) = $1250(1.04)—.

In the 4%, column of Table IV we find, opposite n = 3, the value
0.88900. Thus,

P = $1250 X 0.88900 = $1111.20. QW
SoLuTioN BY Locartrmys. £ \:.\'
'\
P $1250 . N
_ (1.04)° D

log 1.04 = 0.0170 log 3250 = 3.0069

- X3 log [1:04)* = 0.0510

log (1.04)% = 0.0510 L& log P = 30459

P = §1112.

SoLuTiON BY BrvoMisL Foratura.

P =$1950(1.04)-2.
‘ —3(—4)(—3)

N3 (—4) ;
L04)~2 = 1 — 3004 P2 "% 0432 0.04)
O SO e
SR VS TC
1-2.3.4 '
A\
7 V=012 + 0.0096 — 0.00064 4 0.00003840 — - - -
= 0.8889984.
ONF= $1250 X 0.8889984 = $1111.25,
~O° EXERCISES XV. A
N\

1. Find the amount of 8100 for 5 years at 49, compounded
(a) annually, (b) semiannually, (¢) quarterly,

2. Find the present value of $1000 dne in 6 years, the rate of
interest being 49 compounded {a) annually, (b) semiannu-
ally, (¢) quarterly. '

3. What is the amount of 8100 at the end of a year if the interest
rate is 19 per month? '
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4, What is the present value of $100 duein 1 year if the interest
rate is 1% per month?

5. How much must be deposited in a savings bank paying 1197
fo amount to $1250 in 5 years? _

6. How many ycars will it take for $100.00 to amount to $137.85

at 21077

% In how many years will $125.00 amount to $192.43 at 4977

8. If $100.00 amounts to $122.99 in 7 years what is the rate? N

9

0

A Series F; War Savings Bond which costs $75 is redeemed at

the end of 10 years for $100. What rate of ntercgt™ddes it

yield? D

A Series F War Savings Bond is purchased f()l;\$74 and is

redeemed 12 years later for $100. Whatirale of interest

doss it yield? 07\

12 Tf the present value of $100.00 due in-O\years is $86.23 what
is the rate? P4

13. The present value of $240.00 due In 12 years is $149.90,
Tind the rate. Ny

14. How long would it take asumh of money to double itself at
@) 6%7 (b) 5%? ()A%? (d)3%2 (e) 29! () 197

15, How long would it .t:ilie a sum of money to double itself
2t 6% compounded” (a) annually? (b) semiannually?
(¢) quarterly? »(d)monthly?

16. What rate wonld cause a sum of money to double itself in
(a) 10 yearg?y“(h) 12 years? (c) 25 years? (d) 50 years?

7. How lqng;}ﬁll it take $250 to amount to $322 at 3%, com-
pounded-semiannually? -

18, Thepresent value of $150.00 at, 59, compounded semiannually
ARB117.18.  ¥ind the number of years. '

‘{9“: Phe compound amount for a fractional part of a yesr is
defined by the usual formula S = P (1 4 #)m in which frac-
tional values of # are permissible. Find the eompound
amount of $100 at 49 (compounded annually) for (a) 6
Months, (b) 3 months, (¢} I month. )

0. What singlc sum of money paid at the end of 4 years will

fairly discharge two debts, one of $2000 due in 3 years and

another of $5000 due in 6 years if the interest rate is 4%7

Svesnemon, The fair amount would be the compound

10,

11,

—

. If $180.00 amounts to $374.20 in 15 years what is the rate?{ \/)

QY
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amount of the $2000 for 1 year plus the value of the $5000
2 years before it is due.

21. The population of a city is 200,000 and is increasing at the
rate of 2§% per year. If it continues to increase at the same
rate what will it be in 10 years?

138. Annuity. ~

A series of equal periodic payments is called an aghuity.
Thus, a series of equal annual payments on a pieceof prop-
erty is an annuity. Likewise, the monthly pAyinents of
rent for a house or an apartment constituteran annuity.
However, unless otherwise stated, it will-Be assumed that
the payments are annual and that the fibsh Payment is made
at the end of the first vear. For example, a three-year
annuity of $1000 would consist ofthree payments of $1000
each, one payment made at theend of one year, another at
the end of two years, and thedast at the end of three years.

139. Amount of an un‘l’;ﬁ'ity.'

We shall derive the formula for the amount. of an annuity
(that is, the sua’ts’which the periodic payments accumu-
late at compgund interest) on the basis of payments of
one dollar.gach. If each payment is B dollars, instead

- of one dollar, the accurnulation will be R times as much.

Iithe annuity continues for n years there will of course
be s payments. Since the first payment is made at the end
'Qf the first year, it will be at interest for n — 1 years, and

ywill, by formula (1) of seetion 136, amount to {r + )
The second payment will be at interest for n — 2 years,
and will amount to (1 + 7)*2, The next to the last pay-
ment will be at interest for ane vear, and will amount t0
(I +7). The final payment of one dollar is made at the
end of the n-year term, and its value at that time will conse-
quently be 1. The total amount of the annuity will be 1_3113
sum of the amounts of the separate payments. Wriing
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these in reverse order, we have for their sum,
s=1+U+n) F et Q)2 (L o1, (1)
This is a geometric progression of n terms whose common

ratio is (I 4~ 7). Its sum, by formula (3) of section 87, we ~
find to be \

B .\:\’
s d+nr—1 O
T+r -1~ O
n__ AN
or s = ...._._.__(1 +7) I o\ 2)
7 v

w\/
If each payment is R instead of .1.'\%1';3 amount of the
annuity will be Rs, or P\
1445 — 1
S=R (_ﬁ;)_" . @3)

%

The amount of an @:n):ujt-y of $500 a year for 3 years at
2} per cent, for exdmple, is

<, (1.025)3 — 1
SO 8500 X S
'S M '
) AV . )
40, Present valve of an annvify.

p Tlié’ﬁ)resent value of an annuity is the sum of the present
\\;ﬁiu'és of all of the payments. The present value of the first
Payment of an annuity of one dollar is (1 + 7)™; the pres-
ent value of the second payment is (I + 7)~%; and so on.
¢ last payment is made at the end of 2 years, and has a
Present value of (1 - r)™. The total present value of the
Ennuity iy

PN+ @24+ 040" O
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This is a geometric progression of » terms with common
ratio (1 + 7). By formula (4) of section 87, we find

- Sl U ul )
=(1+7) R

1 1-d4n

T1Lr 11—+ o
. L\
. _ 1 —n - A o
or p=lz 40T O
r :u:,\'

If the annual payment is R instcad of ki‘he present value
of the annuity will be Rp, or \
N
gl e N 3)
\S

4
WY
LN

P =

For example, the present. i;f&fflc of an annuity of $500 a year
for 3 years at 2% per cent is
N
& g
) I—-Q.02
\\3500 X _H_(__& .

0.025

Problem}s In annuities are best solved by means of
annuxi@»\ba.‘bles When thesc are not accessible we can qul%
lﬂg«f\(ﬂthmsg or, if greater accuracy is desired, the binona

fqﬁsﬂu a.

;

Example 1.

Find the amount of an annuity of $1000 s year for 5 years 2

49,

SoLUTION BY ANNUITY TABLES,

_plt+m—1 (1.04)° ~ 1
§=R-——"—— =$1000 X .04
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In Table V, in the 49 column we find opposite n = 5 the value
5.4168. Thus,

S = $1000 X 5.4163 = $5416.30,

SOLUTION BY LOGARITHMS.

(1.04)5 — 1
log 1.04 = 0.0170 O
X 5 N
log (1.04)° = 0.0850 o
(1.04)5 = 1.216. o)
el 1.216 — o el
= $1000 X T{SI'_ $540 (a\p{@ma ely).

SoLuTION BY BrvoMIAL FORMULA

(LO4P = 1 + 5(0.04) + 10(0. 04&3k + 10(0.04)° + 5(0.04)"
+ (0.04)%

=14 0.20 +0016~+000064 -+ 0.00001280

m\ + 0.0000001024
= 1.2166520.

12166520 —
= $1 —~—-—___ = $5416.32.
$1000 i< 0 $54
Exam [e\S?

Fing 5& present value of an annuity of 31250 a year for 3 years

at 4}7’@

\\SOLLTION BY ANNTITY TABLES.

1— (14 } 1 — (1.04)73
Pep—~ "7 _ 919 0 X ——
; $125 0.04

I Table V1, in the 49 column, we find oppositen = 3 the value
271751, Thus,

P = $1250 X 2.7751 = $3468.90.
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SorvTIoN BY LOGARITHMS.

1 — (1.04)-8
P = §1250 X ————— .
$1250 X 001
fog 1.04 = 0.0170
X —3

log (1.04) = —0.0510 = 0.9490 — 1 _
(1.04)~* = 0.8892.

. s

1 — 0.8892 . ¢\
P = §1250 X —"-Ooﬁ——— = $3462 (approximately)

ol
s
L

SoLuTIoN BY BiNomiaL Foryrra, In (:Xa-mp}jeg.of section 137
we found by the binomial formula (1,04)~% A 0/K%80084. '

w\J/
1 — 0.88899847/>
P = $1250 = = 53168.80.
3 * 0.0455)

The eorrect value (found by tl%jﬂg annuity tables to 6 Idecin?al
places) is $3468.86. In or@ayftb obtain this value, the binomial
expansion used in calculating (1.04)-3 should be carried to one
more term, <"

¢(\J
a\)
1. ¥Find tha. ?giﬁg)unt of an annuity of $1000 a year for 5 years at

4%, N
2. Fgﬁﬁe present value of an annuity of $500 a year for 3 years
atdey :

EXERCISES XV. B

8.0A man puts $200 into a certain fund at the end of exach year.
~\/ T the fund earns 397 interest, to how much has it accumu-
" lated at the end of 10 years?
4. The purchaser of a piece of property pays $2000 down and
agrees to pay $1000 at the end of each year for 12 years.
What is the equivalent ecash value of the property if the
interest rate is 59,7
5. A man buys 2 house, paying $1500 down and $500 at the end
of each year for 15 years. Find ihe equivalent cash pay-
ment, assuming an interest rate of 697,
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6. Aman has a debt of $5000 due in 3 years. Tn order to pay it

off he deposits & certain amount, at the end of each year for

the 3 years, in a fund bearing 39, interest. How much must

his annual payment be? (A fund of this sort is called a

sinking fund.)

A man buys a house for $8000. e pays $1000 down and

agrees to pay the balance, including prineipal, and interest at ~

5%, n 10 cqual installments. What aanual payment must

he make? ¢\

8. A piece of property is purchased for $15,000. The purcKaser
makes a down payment of $3000 and agrees to pay” the
balance, including principal, and interest at 4%, n'8 equat
annual ingtallments. Find the amount of eaqh@%tallment.

9. A quarry yields a net annual income of $105000) Tt is esti-
mated Lhat the roek will be exhausted JaNb years. What
price could a capitalist afford to pay for'the quarry if he is to
make 6% on his investment? P \%

10. A man deposits $500 af the end of #2ch 6 months in a bank
paying 2% compounded semigimually. How much will he
have to his credit af the exdNof 8 years, assuming that he
makes no withdrawals? _ ’ '

1L Find the present ‘valdes of the annuity of the preceding
exercise, ¢ 2\J

12. A bond has atta;ckeﬁ to it 10 coupons. At the end of each
year a couponsisidetached by the owner of the bond and is
cashed for $250. At the end of 10 vears he turns in the bond
and receives $100.00. What is the present value of the bond
(indl}ﬂ@\g the coupons) if the current rate of interest is 49,7

130A mantiacturing company has a machine which will be com-
pletely worn out in 6 vears. How much must be set aside at

“N\the end of each year, in a fund invested at 4%, to have a
‘safficient amount to purchase a new machine costing $3000
When the old one is worn out? (A fund of this sort is called a
depreciation fund.) '

4 A son reccives, by the terms of his father’s will, an annuity of
$2500 year for 20 years, beginning at the end of 1 year.
The state imposes an inheritance tax of 1%. What is the
#mount of the tax if money is worth 3% (i.e., if the current
Interest rate ig 3%

7
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15.

16,

17,

18,

19,

20,

A man puts $500 a year, at the beginning of each year for 10
years, into a fund which is invested at 49,. What will be the
amount in the fund at the end of the 10 years?

The beneficiary of a life insurance policy is to receive $1000
a year for 10 vears, the first payment to be made at the time
of death of the insured. T'ind the value of this annuity at the
time of death of the insured, assuming the curvent ratesof
interest to be 497,

A man puts $1000 at the end of each year for 6 yedry, hlto a
fund which is invested at 49,. If the fund is (allowed to
accumulate for 6 years more, without any. gdditional pay-
ments being made, what will be its amount gt the end of the
12-year period?

A man invests $6000 at 29 at the time hlq son is born. The
boy is to receive the money in 6 cqu\cml installments, the first
of which is to be paid on his 21st b\i“rthday Find the amount
of each installment.

A man wishes to provide, at the time of the birth of his son,
for the boy’s college educaiion If the hoy is to receive $2000
a year for 4 years, the first payment to be made on his 18th
birthday, how muech must the father set aside, assuming that
the money can lge&nvested at 29,7

A student bérrows $400 at the beginning of each of his 4 years
in college signing a note to pay off the debt, with interest ab
4%, in & gqual installments, the first installment to be paid
5 ¥ £ after the first $400 was borrowed. Find the amount
of-¢ach installment.

. LN Solve the next two exereises by the method of section 113

or that of section 117:

. An sanuity of $500.00 2 year for 4 years amounts to $2128.50.

What is the rate?

+ The present value of an annuity of $300.00 a year for 3 years

is $837.60. Tind the rate.



CHAPTER X VI

Permutations and Combinations

141, Fundamental principle. O
If one thing can be done in m different ways, and f\ after
i has been done in any of these ways a seconduj{'ing can be
dome in n different ways, the two things caw e done in the
order stated in mn different WaYSs. N
This principle can obviously be exte@déd to the case in
which more than two things are invelved.

»
")
s"

Example 1. oON

e

How many three-place numljéivs’can be formed with the digits
1,2, 3, 5 if each digit can beused only once?

~\
SoLution. The h r@péds’ place can be filled in any one of
4 different ways, the ]1%[-3’ rlace can then be filled in any one of
3 different, ways, ipally the units’ place ean be filled in 2 different
ways. Thys, j»\w:‘é'}aéin form 4 X 3 X 2 = 24 numbers,

'n\.:'
Exam;ye“’z
H“W.ihaﬂy three-place numbers can be formed with the digits
]”‘%”‘E’: 5 if any digit can be repeated?
SoLUTION, 'The hundreds’ place can be filled in 4 ways, the
tens’ place can then be filled in 4 ways, and the units’ place can

2lso be filled in, 4 ways., We can form 4 X 4 X 4 = 64 numbers,

Exampfe 3.
How many three-place numbers less than 300 can be formed
With the digits 1, 2, 3, 5 if repetition of digits is not allowed?
2565
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Sovurron. The hundreds’ place can be filled in 2 different
ways (with 1 or 2 only, since 3 or 3 in this place would make the
number greater than 300). The tens’ place can then be filled in

- 3 ways and the units’ in 2. Thus, 2 X 3 X 2 = 12 numbers can

be formed.

Example 4. ~
How many even numbers of three places can he formed vith
the digits 1, 2, 3, 5, repetition of digits not allowed? \ \J)

SovttroN. The units’ place can be filled in on.lyf.l way (with
the 2). The tens’ place can then be filled in .3:'.\-\-'a.ys, and the
hundreds’ in 2. There are 1 X 3 X 2 = npnbers.

142. Permutations. NV

Each arrangement in order of axet of things is called a
permutation of the set. Thug\the set of letters 4, b, ¢, if
we use all of them, can be grﬁmg{ad in the following orders:

abc 3 bac cab

ach R bea cha

3

We see that the}e\ re six permutations. This can be deter-
mined by netitlg that the first place can be filled by any
one of the'three letters, that is, in 3 diffcrent ways; after
the firs{ lace is filled the second place can be filled by either
of tbé" two remaining letters. The first two places can
thé}efore, according to our fundamental principle, be filled

('3 X 2 = 6 ways. After the first two places are filled ‘E-hf’)
 letter to go into the third place is determined. Thus, the

three letters can be permutedind X 2 X 1 = 31 = 6 ways:
If wo have four letters, a, b, ¢, d, and take them two ab 3
time, we can form the permutations:

ab ba e da
ac be ch db
ad bd cd de
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We note that the first place can be filled in 4 different
ways, the second in 3, and consequently the two places in
4 X 3 = 12 different ways.

In general, if we have n different things and take r of
them at 2 time, we can fill the first place in n different ways.
After the first place is filled there are n — 1 things left, and »
any one of thesc can be put into the second place. That is,
the sccond place can be filled in n — 1 different ways. The
first two places can therefore be filled in n(n — 1) different
ways. The third place can be filledin n — 2 differéntyways,
and so ou to the rth place, which can be filled in@— 7 +1
different ways. Thus, the number of perifutations of n
things taken r at a time is given by the;fglimula,

P, =nin — 1) - - towfactors (1)
=n@n—1)... A>r+1). @)

If we set r = n, we find that ‘the number of permutations
of n things taken 2ll at a tifie is

nPn=n(lgng)---3-2-I=n!. (3)

N\
143, Perm utcﬁons}f things some of which are alike.

Suppose tha‘t"\';i"}‘é have five letters e, @, ¢, b, ¢. Consider
a0y permut@iion of them such as abaac. If the @’s were
ifferent, ¥y ay, s, as, we should have 3 ! permutations
similax(o ‘this, namely,
( \ arbagase @obe dac asbayaze
9 01 Dagae QAzhazaqc asbasa.c

These permutations would be indistinguishable if the sEzb-
Seripts were removed. Thus, to any given permutation
Such as abaae, in which the a’s are alike, there corresponds
~ 8¢t of 31 permutations in which the a’s are different.
That is, there are 3 ! times as many permutations when the
@3 are different ag there are when the a’s are alike. But for
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five different letters a:, a;, a3, b, ¢ there are 5 | permutations.
Consequently, if the three a’s are alike the number of
permutations is 5 ! = 31 = 20,

In general, if there are n things of which n; are alike of
one kind, n, alike of another kind, and so on, the number
of permutations of these things taken all at a time is

— n! . K®

AL O )
This can be established by the same linepof Teasoning
employed for the special case. o

EXERCISES XVI. Ay

1. In how many different orders capfﬁ‘)}e'ople be geated in & row?
2. Inhow many different orders can people be seated at a round
table? o '

SUGGESTION, Considex}’t}ié position of one of the persons as
fixed. N

3. A theater partyiis,\eomposed of 3 men and 3 wormen. They
have 6 seats iharow. In how many different orders can they
be seated sg'that no 2 persons of the same sex will be togeth_el‘?

4. After théheater, the members of the party of the preceding
crergigeVisit a night elub. In how many different orders can

e be seated at a round table so that no 2 persons of the
_@ame sex will be next to each other?

S:In how many different orders can 3 married couples be seated
) inarow so that no 2 persons of the same sex will be together
and so that no man will be next to his wife?

6. In how many different orders can 3 married couples be seat(?d
about a round table o that no 2 persons of the same sex ¥
be together and 5o that no man will be next to his wife?

7. Five persons took a trip of 240 miles in a 5-seated automobile.
Before starting out they decided that in order to break the
monotony of the trip they would change about from time t0
time until all possible seating arrangements had been use™
They agreed that a good plan would be to travel the sam®
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distance under each seating arrangement, If this plan were
followed how frequently would they have to change?

8, An airplanc has 6 seats. In how many different orders ean 6

9

10.

11

12,

13

4,

16.

15,

vl

people be placed in these seats when the plane is in flight. if
only 2 of them can occupy the pilot’s seat?
ITow many different automobile license numbers of 6 places or
fewer are possible if no number can begin with a zero?
How many different automobile license numbers can be madé™y,
by using 5 or fewer digits preceded by a letter if the digit
immediately following the letter cannot be a zero and .the
letters O and I are excluded? \ ‘
How many different 4-place odd numbers can be formed with
the digits 1, 2, 3, 4, 5, 6 (a) if repetitions atendt allowed?
(b) if repetitions are allowed? A\
How many different numbers less than 800 can be formed
with the digits 1, 2,3, 4, 5, 6 (a) if repetitions are not allowed?
(b) if repetitions are allowed? \
How many different, numbers gredter than 500 can be formed
with the digits 1, 2, 3, 4, 5, 6. repetitions are not allowed?
How many different 4-placefimbers can be formed with the
digits 0, 1, 2, 8, 4, 5 (a) if Pepetitions are not allowed? (b if
repetitions are allowedh®
A shelf containg 7 books bound in red and 4 bound in green.
In how many different orders can they be arranged (a) if
books of theys@ine color must be kept together? (b) if the
green booksqnust be kept together but, the red books may be
separafed®*
Thererate 4 positions on a fiagstaff and 6 different colors of
flage (st least 4 flags of each color). How many different
E8nals can be made by displaying 4 flags simultaneously?
There are 7 positions on a flagstaff and 7 flags, of which 3 are
red, 2 white, and 2 blue. Ilow many different signals can be
made by displayin g all of the flags simultaneously?
- How many differcnt permutations can be made of the lt?tters
of the fo]lowi_ng words? (a) © degree,” (b} “ abscissa,”
((_3) “ independent,”’ '

3 Bix bersons wish to select 1 book each from a shelf containing

12 books, of which 8 are in English and 4 in Spanish. How
many different selections are possible (a) if 1 of the persons
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20,

144. Combinations.

cannot read Spanish and must select & book in English?
(b} if 3 of the persons cannot read Spanish and must seleet
a bock in English? (¢} if 2 of the persons must seleet g
book in English and 1 must aelect a book in 8panish?

A station wagon has a seating capacity for 8 persons: 2
besides the driver in the front seat, 2 in the middle seat, and
3 in the rear seat. In how many different orders can 8, pere
sons be seated if only 3 can drive and 1 of the others refugsesdo
oecupy a rear seat? )

'\
% Ny

A set of things without reference to the Qrder in which

they are arranged is called a combination{";.\Thus, abe, ach,
bae, cab, are the same combination, altheugh they are dif-
ferent permutations. A formula fetthe number of com-
binations of n different things takén'r at a time can readily
be derived from the formula foe’the number of permuta-
tions of n things taken r at @ Sime. For, corresponding to
each combination of the s thmgs there are » ! permutations.
Therefore, if ,C, denotes the number of combinations of

n things taken r aj; a(mme,
\\ WL =7 1.0, )
from Which\we wet
Z“' P :
22 —r, 2)
QY aCr r! (
or N
N \ C, = n(n — 1) - .. to r factors (3)
- 1-2-.-1
- —r4+ 1) (4)
r!

If we multiply numerator and denominator by (n —7 )!
we reduce (4) to the form

n! . ()

Ay = ——
rtn —r)!
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We note that the formula (5) is also the formula for , A
That is,

nCr =. ncn et (6)

or in words: The number of eombinations of n things taken r

at a time is the same as the number of combinations of n things

laken n — 7 af @ time. O\
This can also be cstablished by the following reasoning: -

To cach combination of r things which we fake Jrom, the

n things, there corresponds a combination of n <n things

which we leave. ."‘:,\\

- 145, Binomial coefficients. o\

By referring to ihe hinormia] formulay\(2) of section 77,
We see that the cocfficient of term 'nif,niber r+1is (4) of
the preceding section, namely, ,C,&% The binomial formula
may therefore be written o

@3 8)" = 0" + 00" bk Coa™ % 4 v s 4 CLar—byr
e\ ' + o L0

\'\ o

This can readilybe shown as follows:

X
@+ Sl +b)(@ +b) - - - (@ + b), n factors.
~C
Fach tegn\\df the expanded product is the product of n
¥8ttersz:0'ne from each of the # factors. Thus, every term
olving o ig obtained by taking a from any r factors
b from the remaining n — r factors. Therefore, ﬂ-Je
Mmber of terms involving ¢"b*" ig the number of ways in
Which r things can be selected from n, namely ,Ch.

146. Totq! number of combinations.
If we st ¢ =} = 1in the last equation, we get

It 1)n=2n < 4 0 Gt e+ uCa (1)
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from which we find
ﬂ.OI +n02+"'+ncn=2n_1s (2)

which gives the total number of combinations of # things
taken 1, 2, -«+, n — 1, or n at a time. For example, the
total number of combinations of the three letters g, by,
taken 1, 2, or 3 at a time, is 2° — 1 = 7, as can readily be
verified. O

7N
< 3

L4

AN

EXERCISES XVI. 8 ,\“

1. How many ecmbinations can be madé oivthe letiers a, b, ¢, 4,
e, f, g taken 3 at a time? x\\

2. In how many ways can a subcomfuoittee of 3 be chosen from a
commitiee of 9 persons? PN

8. A captain wishes to sclect 2 foncommissioned officers to be
placed in command of a détail of soldiers.  In how many ways
can he do this if he h® 8 noncommissioned officers to pick
from? N

4. A student wishes\to use 4 different colors to make & map.
In how manjﬁways ean he do this if he has a selection of 8
colors? N

NOTQIZ “It has been stated that 4 different colors are subi-
clentid use in making a map so that no countries which have
a¢émmon boundary will be the same color. A proof of this

AQsimple statement has never been cffected. It has beed

N proved, however, that & colors are always sufficient.

5. A shelf of reserved reference books contains 20 books. Ifa
student is allowed to take out 2 books overnight how many
selections can he make?

6. How many different basketball teams of 5 players each cab be.
formed from a squad of 12 men, assuming that any mer %!
of the squad can play in any position? )

7. How many different kinds of bouquets of 3 kinds of flower®
each can be made from 10 varieties of flowers?

8. A committee of 3 seniors and 2 juniors is to be selected from &
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10,

11,

12,

13.

14,

15.

18,

17,

181

A

15 Mh

= -

group of 8 seniors and 16 juniors. Flow many different eom-
mittees ean be formed?

. A committee of 5 is to be chosen from 10 seniors and 15

juniors.  If there must be at least 3 seniors on the commitiee
how many different committees can be formed?

A box eontains 6 black balls and 9 white balls, How many
different, combinations of 6 balls, of which 2 are black and
4white, can be selected from the box?

How many diffcrent eombinations of 6 cards each can b\
deals from an ordinary deck of 52 playing cards? Oy
How many different sums of money can be formed #ith s
penny, a nickel, a dime, a quarter, a half dollar, and aldoilar?
How many different combinations can be formed from the
letters a, b, ¢, d, ¢, f, ¢, taken 1 or more at a timeh

A publishing company issues a set of bilingual dietionaries
covering English, Spanish, Portuguese; .F%nch, Italian, and
German. Tach volume is a 2-way di€tionary (e.g., Spanish;
French and French-Spanish are inta single volume). How
many volumes are there in the get?

The tennis squad of one univefsity consists of 10 players, that
of another consists of 7 players. In how mMany ways can a
doubles match between the two institutions be arranged?

From a list of 10 exéréisés on permutations and 12 exercises
on combinations hew many different examinations can be
made which williintlude 5 questions on each of these topics?
How many ifierent combinations consisting of 7 black balls,
4 white baligl.and 3 red balls can be chosen from a box con-
taining 1Q§black, 9 white, and 6 red balls?

L ho‘?: many ways can one make a gelection of 4 novsals,
’2 biégmphics, and 3 books of poems from a shelf containing
10movels, 7 biographies, and 6 books of poems? '
OW many ways can one make a selection of 7 books from
theshelf in the preceding excrcise if he echooses at least 3 novels
&nd at least 2 biographies? .
() Prove that 2Cr+ 2Cr 1 = oaCr. (Note that Pascal’s tri-
augle, section 77, exemplifies this formula.) (b) Use the
formula 1o find the number of committees, consisting of either
3 or 4 members, that can be appointed from & group of 12
Persons,

N
N

\
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MISCELLANEQUS EXERCISES XVL C

1. Given .P; = 132; find n.
2. Given 0 = 105; find n. :
3. In how many different orders can 6 books be arranged on a

shelf?

4. In how many different orders can a theater party of 6 perspus

6.

6.

=

o

be seated in a row of 8 seats?

In how many different orders can a theater party of 8Qasons

be seated in o row of 8§ seats? O

How many combinations of 3 different kinds af) fruit can be

made from apples, bananas, cranges, peachgs;ﬁnd pears?

How many combinations of 4 letters eachleah be made with

the letters a, b, ¢, d, ¢, J7 ¢

In how many different orders can Fehildren be arranged to
- dance around a Maypole? G

An ice cream manufacturer makes 7 varieties of ice cream.

How many different combiuaﬁinns of 2 or 3 varieties cach are

available for making quart-bricks?

10. How many different, Basketball teams (5 players) can be

formed from a squad'of 10 men if only 2 of the men can play
center and these £wo can play in no other position?

11, In how many s¥ays can a crew of 8 men be seated in their rac-

ing shell ifionly ™2 of the men ean pull the stroke oar?

12. How manydistinct lines can be drawn through 12 points no3

13

of whithi‘are in the same straight line? .
. HoWmany differcnt planes can be passed through 12 points
~ne.4 of which are in the same plane?

14 A committee of 5 is to be chosen from § men and 7 wonel.
»3" In how many ways can the committee be formed if it is t0

N 15

18

17

have a majority of men?

. In how many different orders can the letters of the word
“ paraliel ”” be arranged?

- In how many different ways can the letters of the word
* formula " be arranged without changing the order of the
vowels?

. In how many different orders can the letters of the fVOfd
“ decimal ' be arranged if the first place is to be filled with 2
consonant and no consonants are to be adjacent to each otber’
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18, In an 8-team league every team plays each of the others 44
times. How many games are played?

19, How many different baseball nines can be formed from a

squad of 20 men if only 5 can pitch, only 3 can catch, and

these 8 men can play in no other position?

How many different batting orders are possible for the 9 men

of a bageball team?

2L How many different numbers can be made of the odd digits 1)
repetitions are not allowed? 'S\

22. Inhow many different ways can 8 books be arranged on gigﬁé]f
(a) if a certain pair of the books must be together? ,\[b)*if a
certuin pair of the books must not be together? o\

23. From 7 pairs of gloves, in how many ways canaright-hand

and a left-hand glove be selected without taking a pair?

Given 6 flags of different colors, how mang’different signals

can be made by displaying them in, axVeptical line, using any

nuimber af a 1ime? O

25. Given 6 different colors of flags ( a;t’ least 6 flags of each eolor),
how many different signals canbe made by displaying them
in a vertical line, using any<Rimber of flags from 1 t0 6 at a
fime? L

2. How many different cgbinations of colors can be made from
red, blue, yellow, “erange, purple, green, black, and white
by using [ or matat a time?

2. A basketball gégeh wishes to divide his squad of 10 men into
2 teams fou'a’practice game. In how many ways can he
effect the division?

BH ow gfahy different, 4-place numbers can be written by using
2 oddidigits and 2 even digits if 0 is excluded but repetition of

ngﬁs is allowed?

 SorvTion. There are 5 odd digits (1,3, 5,7, 9) and 4 even
digits (2, 4,6,8).  We have four classes of numbers:

+ (a) Those in which the odd digit is repeated and the even
digit is repeated (e.g., 1122),
(b} Those in which the odd digib is repeated but the even
digit is not (e.g., 1124),
(¢) Those in which the odd digit is not repeated but the even
digit is (e.g., 1322).

20

ES
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{d) Those in which neither digit is repeated (e.g., 1324).
We consider each class separately.

(2} The odd digit may be any one of the five and the even
digit may be any one of the four. Thus, the number of ways
in which the two digits may be selected is 5 X 4 = 20.  Bu,
according to section 143, the number of ways in which each
selection can be arranged is N\

4! . O\
| 2ig1 O O
Therefore, the total number of arrangementgiiﬁ}this class is
20 X 6 = 120. R4

(b) The odd digit may be any ore of the five and the
number of ways in which the even digits may be selected 1s
4Cx = 6. The number of ways in{which the sclection of the
two digits may be madeis 5 X 6= 30. Using the formula of
gection 143 again, we find t-,haj:-{he number of ways in which
each selection can be arranged is 12. The total number of
arrangements in this clagsis 30 X 12 = 360.

(¢) The number ofways in which the odd digits may be
selected is 5Cy = 40, The even digit may he any one of the
four. The number of selections is 10 X 4 = 40. Asin (b);
each of t-hqse\(\tan be arranged in 12 ways, o that the total
number pflafrangements in this case is 10 X 40 = 400.

(d) ke number of selections is 5Ce X 1€ = 10 X 6 = 60.
Ea&hi}s"election can be arranged in 41! = 24 ways, Conse
quently, the total number of arrangements in this case 15

60 % 24 = 1440,
%" The number of 4-place numbers is, thercfore, 120 - 360
N 4 400 4 1440 = 2320,
N/ y _ .
29. How many different arrangements of 6 letters each, consistig
of 3 consonants and 3 vowels, can be made from the letters
a,b, ¢, d, ¢, f, if repetitions are allowed? '
30. In how many ways can a selection of 3 letters be made from
the letters a, b, ¢, d, e, 7, if repetitions arc allowed?
3L (a) How many selections of 4 letters each can be made iro?
the letters of the word * proportion”? (b) How many
arrangements of 4 letters each can be made?



CHAPTER XViII
Probability

147, Probability. ' O

If the ways in which an event can cither happerorfail
are all equally likely, the probability that it will“happen
in & given trial is the ratio of the number of ways in which
it can happen to the total number of waysin which it can
either happen or fail. For example, in dtawing a card from
an ordinary deck, the probability of\ebtaining an ace is
4/52 = 1/13, sinee there are four ages out of a total of fifty-
two cards, oY

In general, if the event bein’g",’t’ried can happen in A ways
and fail in f ways (all equally likely), the probability that
it will happen is given by

& N ,
PN T
bt
and the prqb{;%iiity that it will fail is given by
..\’\ 3 ) f
)y =3
N hf

_ff\is‘readily seen that p + ¢ = 1. Thus, in the card-draw-

g example cited above, the probability of fziling to draw
&naceis%g-_—%___l_%_ _
Tt is frequently impossible to analyze an event into the
Ill-.lmber of equally likely ways in which it can happen or
fail. Tn such cases, however, it may be possible to observe a

lazge lumber of trials of the event and to record the num-

h_er of h&PPeﬂings. The relative frequency of ocour qf
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the event is the ratio of the number of happenings to the

‘number of trials. If the number of trials has been large, we

agsume that this relative frequency is approximately the
same as the probability and may be substituted for it.

For example, suppose we had a deck containing an
unknown number of cards and an unknown number of aces.
I£ 1000 draws (with replacement of the card drawn before
the next draw was made) have resulted in 96 aces we'slipuld
say that the probability of drawing an ace (as defermined
by statistical experiment) is 96 /1000 or 0.098, Here it
would be possible to check our experimental gesult with the
mathematical probability by counting thienumber of eards
and the number of aces. RN

Suppose, however, that a life it Strance company has
records on 100,000 men 47 yeaxs :cﬁj(i showing that 98,800
of them are alive one year later,"the other 1200 having died.
We say that the probabilityithat a 47-year-old man will sur-
vive at least one year 588,800 /100,000 = 0.98800 and the
probability that he will tie during the year is 1 — 0.98800
= 0.01200, althoygh\it is obviously impossible to analyze
the situation irg{éfa.’number of equally likely ways of living
or dying. A\ _

A table exhibiting the number of persons dying each year
out of anNnitial group of specified size is called a mortality
table("ySuch a table is the American Experience Table of
1}16 ity (Table VII at end of book).

A Example 1.

\

What is the probability that a person 10 years old will die dur-
ing the year?
. SovurioN, In the American Experience Table the pumber
living at age 10 is 100,000, the number dying during the year ¥
749. The probability of dying is 749,100,000 = 0.00749.

Example 2.

Find the probability that a person 25 years old will die churing
the year.
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SovurioN.  The number living at age 25 is 89,032, the number
dying during the yearis 718. The probability of dying during the
year is 718/89032 = (1.008.

fxémpfe 3.

Find the probability that g person 25 years old will live for at
least one year.

SovtrioN. The number living at age 25 is 89,032, the numbery,
living one year later is 88,314, "The probability that a person 25
will live to be 26 is 88314/89032 = 0.092. A

Note that the sum of thé probabilities of example. 2 and

example 3 1z 1. S

148. Expectation.

If p is the probability of success in ai';s\.}dgle trial of an
event, the expected number of suCedSses in n trials is np,
The expected number of hearts iu.;ﬁaking 100 draws from
an ordinary deck of cards (replgcfﬁg the card drawn before
making the next draw) is 1008X % = 25, since the prob-
ability of obtaining a heart 6n a single draw is 38 = 1. \/

If p is the probability&hat a person will win an amount
of money a, his expeatation is defined to be pa. It is the
average amount thathhe would expect to win in the long
L For examplerif a person is to win $1.00 provided he
I8 successful i Hrawing a heart from a deck of cards, his
eXpectatiol}..ig.z X $1.00 = $0.25.

\\ EXERCISES XVII. A
AN ;

61('“/{?!})03: containg 6 white balls and 4 black balls, ide.ntica.l
except for color. If a random draw is made, what is the
Probability that the ball is (a) white? (b) black?

%, What is the probability of drawing a red ace from an ordinary

deck of 52 playing cards? B

3. What is the probability of throwing an gen. pumber other

than a6 with g cubicai die? '

4 The Yin of a circular wheel is divided into 27 equal parts,

Which are marked with the numbers 1 to 27 inclusive. A
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fized pointer at the side indicates one of the numbers when the
; wheelis at rest. If the wheel is spun what is the probubility
J that, when it stops, the pointer will indicate {a) the number
7?7 (b) an odd number? (¢} & number consisting of 2
digits? (d) a number less than 7Y {(e) a number divisible

by 57 (f) a number divisible by 3?

5. What is the expectation of a person who is to get 25 eonts if he
throws an even number with a die?

6. A box contains 12 white, 5 red, and 3 black balls. What'is the
expectation of & person who is to receive a dollar 1f he , drivws
a red ball? \

7. The prize in g lotterv, for which 200 tickets, a‘re Out is §25.
What is the expectation of a person who hold¥’5 tickets?

8. In a box are 25 envelopes which are mdistinguishable from
each other in appearance. Each of 3obthem, however, con-
taing a $2 bill. What is the expect@t}on of a person drawing
an envelope from the box? \

9. (2) What is the probablhty that a person 20 years old will dle
within one year? (b) “hai} is the probability that he will
live at Teast one year? o8°

10, (a) What s the probablli’sy that a person 90 years old will die
within one year? £A(b). What is the probability that he will
live at least ond year? _

11, Find the probability that a person 25 years old will live af
least 5 yeafs longer.

. So Ghron. The American Experience Table shows that
\, 89,032'pexsons (out of an original group of 100,000) are liviog
' %\Qs\age 25. 'The number living 5 yvears later (that is, at age 30)
is85,441. 'The probability that a person 25 years old will live
~ '<.' ' at least 5 years longer is 85441 /80032 = 0.9597.

vV 12. Find the probability that a person 25 years old will die within
: b years.

SovuvTion. The number dying between ages 25 &I{d 30 ?s
89,032 — 85,441 = 3591. The probability of dying *
3591/89032 = 0.0403.

18, Find the probability that 2 person 50 years old (a) will live
at least 10 years, (b) will die within 10 years.
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14. Find the probability that a person 35 years old (a) will live at

15.

16.

Jeast 10 years, (b) will die within 10 years,

What is the probability that a person 25 years old will die
within the ages of 40 to 42 inclusive? _

A box contains 6 white balls and 4 black balls. Three balls
are taken at random from the box.  (a) What is the probabil-
ity that all are white? (b) What is the probability that 2 are
white and 1 blaek?

SoLuTioN.  (a) The number of ways that 3 white balls {;a}n:\
6-5-4 ' \
be drawn from the 6is (' = [ 2.3° 20. Thisis hs num-
ber of ways in which the event of drawing 3 wt ite balls can
happen. The total number of ways in whickithe event can
happen or fail is the number of ways in wh\jch 3 balls can be

(5710-9-8
selected from the 10 in the box, viz., 1= 1-3.3
, oo o0 @1
The required probability is W05V 120 ~ 6
N\ s 6-5
- (b) The nurber of ways of getting 2 white balls is 4C7 = 1-2

=15. The number o(i’mys of getting 1 black ball is (£, = 4.

The total number, ofiwys of getting 2 white balls and 1 black

ball is the produgt\o}these two, and the required probability is

2O 1504 1
D wCs 120 2
o\ 4 .

17, 1f a‘iﬁ“contai_ns 12 white balls and 6 black balls, what is the

pEOPability that 2 halls drawn from the box at random (a) will

~\both be white? (b) will both be black? (c) will be of

“different, colors?

8. What is the probahility that of 4 cards dealt from & well-

13,

shuffied deck 3 will be diamonds and 1 a spade?

There are 12 seats in a row at & theater. What is the proba-
bility that if 4 seats are talken at random they will all be
together?

20, Kach of the numbers from 1 to 10 inclusive is written on a

separate ticket. These tickets are thoroughly mixed and 2 of

Q!
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them are drawn. Find the probability that their sum will
be 7.

21. Each of the numbers from 1 to 25 inclusive Is written on a
separate ticket, The tickets are thoroughly mixed and 5 of
them are drawn., What is the probability that 2 of them will
he odd?

22. Certain manufactured articles are sold in boxes of 50 each.
At the factory they are inspected by taking & sample 6§
articles from each box and passing the box as satisfactoryif no
defective articles arc found in the sumple. Find the'proba-
bility that a box will be passed if it contains (a) \ défective
article, (b) 2 defective articles, (¢) 3 defective afticles.

23. Five red books and 4 blue books are placed{at’random on a
shelf. What is the probability that the Hliie’books will all be
together? RN

24. Four red books, 3 blue books, and 2 feen books are placed ab
random on a shelf, What is the probability that the blue
books will all be together and ﬂie green books all together?

149. Mutually exclusive &vents,

Two or more event\are mutually exclusive if not more
than one of them ean happen in a given trial. Thus, the
drawing of an ae¢rand the drawing of a king (in the same
draw of a single card) from a deck of cards are mutually
exclusive events. The drawing of an ace and the drawing
of a hearfyare not.

T{a‘s\zgﬁ‘bbabﬂity that some one or other of a set of mutuaﬂ_y
excliisive events will happen in a single trial is the sum of their
separate probabilities of happening.

N Let us for simplicity consider the case of two mutually
exclusive events. Suppose that the first can happen in
ways, the second in m, ways, and that the total number qf
ways in which either of the two events can happen or f%ﬂ
is % Then the probabilities of happening are p; = #a/?
and p; = m, /n respectively,

The m; ways in which the first event can happen and the
My ways In which the second can happen are mutually
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exclusive. Consequently the probability that either the
first or the second event will happen is

My + My

— M M
7 _n+n P1 + po.

As an illustration let us caleulate the probability of draw-
ing an ace or a king from a deck of cards. According to the
theorem this probability is 75 + & = #&. Assa verifica~)
tion we notc that since there are 4 aces and 4 kingd, the
probability of drawing either an ace or a (king s
5= = o R

It is not difficult to extend the reasoning'¥0)ds to cover
the casc of more than two events. \

o

150. Independent events. N\

The events of a set are independent if the happening of
any one of them does not affcet $he happening of the others.

The probability that oll of @$¥t of independent events will
happen in a trial in which el are possible is the product of
their separate probabilili€s.of happening.

For the ease of twe'independent events, suppose that the
first can happen in>x-1 out of n; possible ways of happening
or failing, and ghat the second can happen in m» out of ng
Possible wa w“\ The probabilities of happening are p; and
Py l‘espect.i(?a}-. By the fundamental! principle of section
141, ‘bhg%’f"o events can happen together in mym, ways, and
the teta} number of possible ways in which they can happen
orfail'is 2, Thus, the probability that both will happen

Sig)

FGTE Ry TNg

The extension to more than two events is obvious. .

As an illustraiion, let us consider the probability of
throwing two aces with a pair of dice. According to the
theorem the probability is 4 - & = . This is verified if
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we note that there is only one way to obiain two aces
{both dice must show aces). There are however 6.6 = 36
possibilities, since any one of the six faces of either die may
oceur with any one of the six faces of the other. Thus the
probability is #%.

151. Dependent events. ~

If the happening of one event affects the probability bf
occurrence of another, the second event is dependen,t\ohffhe
first. For example, in drawing two cards from a deck the
probability of obtaining an acc on the sccond dfaw depends
on whether an ace has been drawn the first ¢ifne.

If the probability that an event will happen is p,, und if
after it has happened the probability that ' second event will
happen is py, the probability that thg{ﬂ?st event will happen
and will be followed by the second pient s pyp;.

Suppose that the first event 'can happen in 7y out of m
possible ways of happening Ot failing; then p, = my /n.
Suppose further that aftptf’lthe first event has occurred the
second can happen in 75 ways and happen or fail in np ways;

~then p, = my/ny. By the fundamental principle of sec-
tion 141, the ﬁrstk\eVent and then the second can happen
in mym, ways; (an occurrence or failure of the first, follow ed
by an oceum'enee or & failure of the sccond, can take place
in mn, wayd. Thus, the probability that the first event
owill hqgi}en and be followed by the second is

@ Ntz L
This proof admits of an easy extension to more than two
dependent events.

Example.

Find the probability of obtaining an ace on both the first and
second draws from a deck of cards when the first card is nob
replaced before the sceond i is drawn. -
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Sortrion.  The prebability of obtaining an ace on the first
drawis py = ¥% = 5. If the first card drawn is an ace there are
only3 aces remaining in the deck, which now consists of 51 cards,
Thus, the probability of getting an ace on the second draw is Py =

31 = 7r- The required probability is Pip: = oy = 5yt

ol

EXERCISES XVH. B

1. A box contains 10 white balls, 3 black balls, and 2 red balls.
What is the probability of drawing a white balf or & red ball)
in a single random draw? O

2. What is the probahility of drawing either a red Ligipior the
ace of spadces in a single draw from an ordinary detloof cards?

3y’Each of the 9 letters of the word “ seventeen Y48 Written on a

/ separate slip of paper, These slips, which.are exactly alike,
are placed in a box and thoroughly m&ed What is the
probability of obtaining either an € aran'in a single draw?

4. Each of the letters a, b, ¢, d, ¢ and efeh’of the numbers from 1
to 15 inclusive is written on a separate slip of paper. These

“ sglips, which are identical, are ,placed in a box and f:horoughly
mixed. What is the probability, in a single draw, of obtain-
ing either a vowel or an.eveh number?

6. Find the probability that a person 20 years old will die either
between the ages\-{@wélg inclusive or between the ages 6069
inclusive, N

8. Aman drawgd'eird from each of 2 separate decks. Find the
probability™(a} that the eard from the first deck is a jack
and that(fﬁﬁn the second deck a spade, (b) that the card from
the ﬁ.i‘-iéi-flec-k is black and that from the second deck a red ace,
(6 )\bhat the card from the first deck is a heart and that from

Abe second deck a face eard (king, queen, or jack). )
(WX man draws 1 card from each of 3 separate decks. What is
the probability that all are (a) red? (b) aces, deuces, or
either? (c) face cards? : .

8. What is the probability of throwing 3 aces i & single thl’o‘f" of
3 dice (or, what ig equivalent, in 3 throws with 1 die)?

% Amanis 50 years old, his wife 45. Assuming that the proba-
bilities of their deaths are independent, find the prob-
ability (a) that both will die within a year, (b) that she will
die within a year but that he will not.
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© 10. A man draws 2 cards from a deck. What is the probability

(2) that the first card is a spade and the second a diamond,
{b) that either card is a spade and the other a diamond,
{e} that both cards are spades?

I1. A man draws a card from a deck, replaces it, and makes
another draw. What is the probability (a) that he getsza,
club both times? (b) that he gets an ace the Frst time and\
face card the second? (¢} that he gets u king both tunes“?‘

12, What iz the probability of a run of 10 comecutwe.heads n
tossing a coin? N

13. One box eontains 6 white and 6 black balls, 3 §Geond box eon-
tains 10 white and 5 black balls. A card L%"Z:l\ealt from a well-
shuffled deck and if it is a diamond a hallis drawn from the
first box, otherwise a ball is draws ‘}r'om the second box.
What is the probability of obtainingh white ball?

14. One box eontains 5 white.and 50latk balls, a sceond box con-
taing 10 white and 2 black balls A die¢ is thrown and if an
ace occurs 3 balls are drawn Trom the first box, otherwise 3
balls are drawn from the second box. Find the probability of
getting 2 white ballsiand 1 black ball. :

Y

152. Probablllfy\m repeated trials.

If p s thé probabthty that an event will happen and q s
the probahility that it will fail in any trial, the probability
that Kﬁhﬂ happen exactly r times in n trigls is

N\

I " Fon—r _ nt r n=t 1
P S N

As an illustration, consider the probability of throwing
exactly 2 aces in 5 throps of a die. The probability that
the event (throwing of an ace) will happen in any t trial is
p = % and the probability that it will fail is g =% The
probability that it will happen twice and fail three times
in a specified order, such as happening the first two times
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and failing the last three, is by the theorem on independent

probabilities,
1555 (1)2@)3
6 6 6 6 6 6/ \6
But the 2 aces may be obtained on any 2 of the 5 throws, {
that 1s, in 505 = -15~—;1 = 10 ways. If the happening of ﬂ;é
. '\

event is indicated by 4 and the failure by f, these 10 Fays

may be indicated by O

~N

CCTL Y R i LT L NN i

JHRE - Jhifh fIRRS RSO HfRA
’\2.

The probability for any one of these orders is (3)2(3)?,
and the total probabitity is R\

» .’«

10 (1Y 5\* _ 625
' (6) (6) 3888

More generally, the probability that an event will happen
in each of r specified trials and fail in the remaining n — r
Is prg, But these r trials can be chosen from the = trials
in ¢, wags" Consequently, since these ways form a
mUtuall\ia)}éiusixfe set, the total probability is nCrp"q"".“".

It shmild be noted that this is term number 7 + 1 in the
bindmial formula,

e+ PI" =" + W0 p 4 O™ P + o
+.0qTp + o E P (2)

In fact the terms of this expansion give the probabilities

that the event, will happen exactly 0, 1, 2, = 71y - -1 7

times in n trials. -
The probability that an event will happen at least or at
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most a certain number of times in a given number of trials
is found by taking the sum of the appropriate terms in(2).

Example 1.

Find the probability of throwing at least 3 aces in 5 throws of
die.

SoruTioN., This is the probability of throwing 3, 4, or 5 ages ™
and is thus

o) () o) QS0

250 +_ _ 76 > 2 __
- 6“ & 0176 648
Example 2. ,x’,\\'

Find the probability of th.romng a,t lea,st 2 aces in 10 throws of
a die. \

Sorvrion. This proba,bﬂnfv s the sum of the probabilities of
throwing any number of aces from 2 to 10 inclusive. Instead of
summing the nine corregponding terms of the binomial expansion
we find the probablhbjy\of throwing no aces or 1 ace and subtract
from 1. ’\\

The probabﬂlty of 0 or1 ace is

,{jg)w 110 (_) 1 3.59 97656625
\;\'}. 6 6/ 6 20.30 7 20155392

O\
'I,‘he probability of throwing at least 2 aces is

9765625 _ 10389767
T 20155392~ 20155392

- EXERCISES XVII. C

1. Find the probability, in tossing 5 coins, of ge’sﬁmg {a) exactly
2 heads, (b) at most 2 heads.

2. A man makes 4 draws from a deck of cards, each time replac-
mg the card drawn and reshuffling the deck before making
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another draw. Find the probability that he gets (a) exactly
3 kings, {b) at least 3 kings.

3. What is the probability, in throwing 6 dice, of getting
(a} exactly 3 aces? (b) at least 3 aces?

4. A baseball player hag a batting sverage of 0.300. Assuming
that this ean be used as the probability that he will getb a hit,
find the probability (a) that he will get exactly 2 hits in 4
times at bat, (b) that he will get at most 1 hit in 5 times Aty
bat. "N

b. A rifleman is able, on the average, to hit a target at a_certain

range 8 times out of 10. Find the probability that ji'e reund

of 10 shots he will (a) hit the target every time, (b} make 9 or

10 hits. \¥;

In a certain Inamdacturing process it is foind that, on the

average, 1 article out of 100 js defective. , “What is the proba-

bility shat a random sample of 5 artieles' will contain (a) no
defective articles? (b} exactly 1 defeptive article?

Find the Probability that of a gréwp of 3 sixty-year-old men,

(a) exactly 2 will die during tha yeﬁr, {(b) aspecified 2 will die

during the year, but the thigchwill live, (c) at most 2 will die

during the vear. '

8. According to records dnthe office of a college registrar, 5 per
cent of the studentsin'a certain course fail to pass. What is
the probability that'in a group of 7 students of the course,
selected af rangdom, exactly 2 will fail?

3 Hospital re Grls show that 10 per eent of the cases of 2 certain
disease ard €ital. Find the probability that out of 6 patients
admittﬁéhidth this disease (a) all will recover, (b) exactly 2
willdie, (¢) at least 2 will dio.

10. Figjd 1ho probability, in tossing a coin 10 times, of getting

X8 & heads and 5 tails, (b) a run of 5 heads followed by & run

of 5 tails, (¢) the sequence shown in the following schematic
Tepresentation: Akhithihth.

j=

T

MISCELLANEOUS EXERCISES XVIl. D

L rom g box containing 8 white balls and 4 black balls, 3 ba:HS
Sre drawn at random. Find the probability that 2 are tht..e
and 1 is black, under the assumption (a) that each ball s
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o

7

8.

&

returned to the box before the next is drawn, (b) that the 3
balls are drawn simultaneously.

There are 5 keys, only 1 of which will uniock a certain door,
If the keys are selected at random, one at a time, what is the
probability that the lock can be opened by (a) the first key?
(b} the second key? (c¢) the fifth key? (d) If the first and
second keys have beer tried and have failed to unlock the
door, what is the probability that 1t can be opened bynthe
third key? ‘O

. Two dice are thrown simultaneously. What is tiie)probabil-

ity that the number of spots uppermost is 67 43

. Three dice are thrown simultaneously. Whab i§ the proba-

bility that the number of spots uppermost i‘s.ﬁ?

. The instructor in a class writes the name of each of the 25

pupils on a separate card. Hesthen shuffles the eards
thoroughly, draws a card, and calls"6n the pupil whose name
appears on the card to recite\\If he repeats this procedure
each time before calling op\a pupil what is the probability
that a pupil who has ju sh recited will be the next one called
on? o

. A man has a tickes in aoiottery in which 1000 tickets are out.

The main prize is'$200 and there are also two prizes of $50
each and five$10 prizcs. What is his expectation?

From a El‘mb’ of 6 boys and 4 girls a committee of 3 is choser
by lot. /sWhat is the probability that it will consist of more
girls than boys? ]
Eilfe}("lentical disks are marked with the numbers 1,2, 3,4 %
\\xbﬁﬁectively , and placed in a hox. After they are thoroughly

N Tnixed 8 of them are drawn at random. What is the probs-

10.

" bility that their average value is 3 (a) if they are dravl

simultaneously? (b) if each disk is reptaced and mixed with
the others before the next drawing is made?

. A student taking a true-false test consisting of 12 questions

guesses at the answers. Assuming that he is equally Iikely to

make g correct or an ineorreet guess on each question, find the
probability {a) that all of his angwers will be right, (b that
half of them will be right and half of them wrong, (¢} that
75 per cent or more of them will be right. 0
A multiple-choice test consists of 10 questions. After eat
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question are listed 4 answers, only 1 of which is correct. Ifa
student attempts to guess the correct answer to each question,
what is the probability that more than half of his answers will
be right?
11. A and B take turns drawing cards from a deck, the card being
replaced before the next draw ismade. The first one to draw
a spade is to receive $5. 1f A draws first what is the expec-
tation of each? O\
Each of the integers from 1 to 9 inclusive is written on a 5€Pa"
rate card. A and B take turns at drawing the cards, one by
one, until all have been drawn. The first to draw/the mum-
ber “ 17 wins the game. If A has the first fwnwhat is the
probability of winning for each? i
13. Bolve the preceding exercise for the case in.gwbich the integers
from 1 to 10 inclusive are used. S
In a baseball World Series the probdhilify that the American
League team will win an individual game is p, the probability
that the National League tearn will win being, consequently,
1l — p. The championship i& decided by the “best 4 games
out of 77; that is, the penhant goes to the team which first
wins 4 games.  Find thé probability of winning the champion-
ship for cach team. {)
16. There are 8 seat-;%m row. If 2 seats are chosen af random
what is the probability that they are adjacent to each other?

18. Two persons\ire placed at random at a round table about
which thet@ire 8 chairs. What is the probability that they
will b’&Q’e}’{t to each other?

11, So]v,e the preceding exercise for the case of 3 persons.

8. Five' hundred tickets, marked lc., 2¢., 3¢., and so on up to

£\$5.00, are placed in & box and thoroughly mixed. What is the
‘expectation of a person who is to receive the amount marked
on the ficket which he draws?

13, A glot machine, when it stops, shows 3 cards in 2 row. Each
of these 3 is one of 5 (A, K, Q, J, 10) equally likely to appear.
The player of the machine is paid 24 nickels if 3 A's appear,
12 nickels if 3 K’s or 8 Qs appear, 8 nickels if 2 A’s and a K
appear, and 4 nickels if an A, a K, and a Q appear. What is
his expectation?

2. Tt is known that in a certain manufacturing process 1 per cent

12

14

-
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of the articles are defective. Find the probability that a
random sample of 15 articles will eontain {a) no defectives,
(b) exactly 1 defective, (c) exactly 2 defectives, (d) not more
than 2 defectives.

21, In a clairvoyance experiment 5 cards are placed, face down-
ward, on a table. The person on whom the experiment is
being tried knows that 3 of the cards are red and 2 black, but
has no other information'regarding them.  If he tries todesig-
nate which cards are red and which are black, but; ‘hés no
powers of clairvoyance, what is the probability,\that the
number of cards whose cotor he names correttly i {a) 57
by 47 (©)87 (@22 ()17 (H? (U

22, If guinea pigs are inoculated with a cetfain dizease only 40
per cent, of them recover. Ten of thesdahimals are given the
disease and afterwards are treated with'a certain drug. Eight
recover. Does this indieate tha:t\the drug has a curative
property? In other words, if { has no such property what 18
the probability that 8 or maoteanimals would recover anyhow?
If this probability is smilbit would mean that % or more Ie-
coverics are not likelj‘unless the drug has some curative
properties. C

23. A man stands ¢ street corner and osses a coin. 1 it falls
heads he walks 1 block north, if it falls tails he walks 1 bloek
south. Starting at his new position he repeats this pre-
cedurd, CWhat is the probability that after having g£0D€
thrgugh the procedure 10 times he is (a) exactly 4 blocks from

{igloriginal starting point? (b) exactly 3 blocks south of 18
original starting point?

+84. Each of 4 persons writes, at random, the name of one of the

S J
\ ™

others. Find the probability (a) that all of the names will
be written, (b) that the name of a specified persoR will not
be written.

95, Each of n persons writes, at random, the name of one of the
others. What is the probability. that the name of 2 SPB‘Hﬁed
person will not be written? h
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Determinants

N
:".\‘
:”}'\\n:',
153. Determinants of order two. G\
.
Let us solve the pair of equations &:}5 ‘
ar -]— bly. ='k1; \\\' (1)
az2 + by = ko ':j\\“
AN\
Multiply the first by b,, the second h)? 31 This gives
G]ng + bﬂ')zﬂ“* k b2’
ashx + b}fiﬁa@ = kob;.
Subtracting, we get &\
4 \ v
(alé&t;- agb1):c = klbz - kzblr
WO
&Ild, if Chbz "T;‘Iﬁ%l = 0:
Y
O g o by = Rabi @
{.\ N a],bz - (1251
s}:ﬁlaﬂy,
_tem — Ity )

431 bg — agbl

That these values satisfy equations (1) can be proved by
actual substitution. _
The denominators in the expressions for  and y are iden-
" 993
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tical. We denote this common denominator by the symbol
ay b 1 '
o b’ (4)

which is called a determinant. This determinant, which
has two rows and two columns, is said to be of order-{wos
The o's and b’s are elements of the determinanfe’, The
elements a; and b, which lie in the line from the uppereit-
hand corner to the lower right-hand corner of thé determi-
nant constitute the principal diagonal. It isseén that the
value of the determinant is found by t-akin.\g\ the product of
the elements in the principal diagonal gnd subtracting from -
it the product of the elements in t-ha\e';. her diagonal. Thus,

54 Q" .. _

\2 3\=5'3§’?-4=1a—8—7,

6 4l oY _ -
2 3\ = - (=) -4 =18+ 8 =2

S |
We can novs(q‘rite the solution (2) and (3) of the pair of
equations 'Ql‘), by means of determinants, as follows:

WK
) '\“ 4 l kl bl tly E
‘§ D" - ke bs ’ y = as kgl
\ a4 bl @i b1
[17:) bg 451 b2

It may be noted that for the determinant in the depom™
nator, the elements in the first column are the coefficients
of z in the original equations (1), and that the elements It
the second column are the coefficients of ¥. When we S0:¥°
for z, the determinant in the numerator is the same a8 t

in the denominator, except that the coefbcients of & 3‘"8
replaced by the right-hand members of equations. (1)
when we solve for ¥, the determinant in the numerator 18
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same as that in the denominator, except that the coefficients
of y are replaced by the right-hand members of (1).

Example.

Solve the following pair of equaticns by determinants:

2z — 3y = 16,
5 + 2y = 2.
Sorurion. O
16 -3 N
- 2 2 ‘16 2—2.(~3) 38=.~2,""
2 -3 2.2 5+{—-3) 1900
5 2 \
D
2 16 AV
5 2 2 2—5- 16 v —16 4
y‘ = - == —--——_= —f
2 —3 2 2—25- ,(—3) 19
5 2 ;’,;

«d

EXERCISES X VIHL. A

Solve exercises 1-24 of 1K ’g‘by means of determinants.
\"

N
154, Deiermmants of order three.
Systems of lmehr equatmns in more than two unknown
quantities ¢; also be solved by means of determinants.
To 111ustm\ a%et us solve the system of equations

AN ax + by + ez = ky, : )
i + by + ez = ks @)
A asx 4 b3y + caz = ks 3)

The method of obtaining = given equation is shown at
the left; thus, our first step is to multiply equation (1) by
Cy Whlch is indicated by ¢ - (1),

€. (1) @162 + bicay + €162 = kit 4)
¢ (2) 36, + Batry + 01002 = Kacr. (5)
(4) — (5) (@1e2 — azt1)z + (bica — bec1)y = kita — kacy. (6)



296 DETERMINANTS [Ch. XV

¢s - (2) aaesT - botayy + €aCsz = KsCa. m
o+ (3) asCeT -+ batay + €2tz = Fsca (8)
(7Y — (8) (acs — aat2)® + (bzc_s — byey)y = Koty — Kaco. (9)

Next eliminate y from (6) and (9), obtaining

[{area — azey) (bats baﬂzj — (azc3 — asCz){brtz — Bocy YN
= (kicz — Fzc1) (bacs — bac2) — (hacs — kuca) (b1t 7\55\61)—
AN

\/

Solve for z, and simplify:

— k]_bgC3 _klbgﬂng' kgbgcl —Iﬁgblcg;l"k:gblgﬁ\.*kgbz(h . (10)
@3bacs —a1hacat02Ds01 —apb1Cs + dabyes —asbate
(It is assumed that the denominatéris not 7ero. )
The denominator of the fraction in (10) may be putb in
the form N

0y (bats — byca) — az(brgps bacr) + as(Bres — ot

bl Ccy
- 11
. cﬁ\ an

be Ca
ba {K

We now\‘iaf;lti'oduce the new symbol,

= {1 +l‘].3

N1 .
N i i
“ l bs €3

3
N\’

7 a b ¢

P 1 i 1
\\ ' a2 be Cals (12)

al s b3 C3

o) ) :
) whose value is defined to be (11). This symbol s 2 deter-
minant of order three (it has three rows and three columns)-
The mumerator of (10} is similarly transformed into
by Cz by €1 by €1
kl \ b3 €3 ‘ kz \/53 C3 bg cz

kl bl 1
ky by O \ (13)
kg b;; ]

+ k3




q154] DETERMINANTS OF ORDER THREE 207

and we can write the value of x as the quotient of (13)
divided by (12). The unknowns y and z can be found as
similar quotients, and the complete solution of the linear
system (1} can be written as

k1 bl €1 3] }ﬂl €1
ko b, €2 ity ko Cs
r = by bs €3 y = 3 ks C3 .

a by e |’ a, b, R A
) be Cz as by 20 Y O
g by Cs a3 b3 ¢z N

o1 by k1 ....:\'\

45 bg kg \ .

L 1 0, (14)

3] by NN

as b | é)|

iy bs o3V

That (14) is a solution of thediven system of equations can
be proved by direct substitition.

The common. denomq”n\a.tor is the determinant of the
coefficients of the system of equations (1), (2), (3); thatis,
its elements are thé. tocfficients of z, ¥, z in these equatior_ls
arranged in theh‘fespective positions. The numerator in
the expressiofifor any unknown is the same as the denomi-
nator, extept that the coefficients of this unknown are
replacedby the corresponding constant right-hand members -
of the\system of equations. _
The determinant method of solving a system of ]JJ}t?ar
equations eliminates all but one of the unknown quantities
a once. Thus, the foregoing solution of the set of equa-
fions (1), (2), (3), for the unknown %, is equivalent to
Dultiplying them by the determinants

by 71

oo b G
2

ba [}

3
2

. bl Cy
’ bs 3
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respectively, and adding the results. This eliminates y and
z simultaneously.

Example.

Solve by determinanis:

dr —y+4z =2, O\
2z + 3y + 5z = 2, A
Tz — 2y + 62 = 5. \\‘
SOLUTION. ,.f“}‘.
2 —~1 4 42 4l SOV 4 12
2 3 5 22 5. 9 3 2
5 —2 & 7 55=1\"z 7T -2 5
x:-_.———v—- 3 — I 4 _— ———————
s -1 4] YTl el 1 1 4
2 3 5 2 \¥5 2 365
7 -2 6 w32 6 7 -2 6

The denominator has the value

% 1 4
\\z 6 3 5
;\4,(18 +10) — 2(—6 +8) + 7(—5 —12)
HS4.28 — 224 7(—17) = —1L.
o

el

\"4
_ @'hé numerator of x has the value

i"\’.’:v

~O 3 5| -1 4 ~1 4
V 21 -2 {3\ 2 T3 35
=2-28-—2-2+5-—17)=—-33.
—-33
Thus, . ~T% s
us, = 3

The student should complete the solution for ¥ and 2. The

results are y = 2,z = —2.
C e
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EXERCISES XYili. B

Evaluate the following determinants:

1.i1 4 2 22 -1 3 3 4 0 3
35 1) 4 7 —=5|- |-5 3 1}
2 3 2 6 1 2 2 —6 7
&, 7 1t —4 5. |27 9 —19 ~
0 8 =3} 11 ~15 Qf- \
-5 4 12 48 0 2 O\
A\
6115 —6 20 7. O
13 —-23 17 —21 N
21 14 -9 O
8119 0 —4 9. 13
5 1 —2i- 3
2 3 1 3
10. Factor the following determinant: ¢
1 1 ']E::.;ls
z yl% |
z2 ,y'?:' 22
11. Balve: QO
(N2 9 6
N e 7 —2(=0
PR
N4 .
12, For whatyspelues of & will the following determinant be
positive?™\“
;\‘\\“ z 3 1
RO 1 3 =7
~O 0z 2
Solve for z, y, ¢ by determinants:
13. 5z + 2y + 42 = 4, 14, 3z — Yy — 22 =25,
3z — y4 2 = —1], 4z + Sy +3 = —12
Tz —3y — 32 =8 : 5z + 10y — 22 = 31.
16, 52 4 7y — 3z = 36, 16. 9x — 6y — 42 = =5,
2 — 8y + 4z = —62, ¢ -3y + 32=0

3z — y+ 9 =18 11z 4+ y — 10z = 17.
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17. 9r 4 4y — 82z = 10, 18, 5x -+ 2y — 3z = B2,

¢ — 6y -+ 32 = §, 6 + 1iz = —8,

3z — 5y — 2z = —8&. dr + 3y + 8z = 22,
19. 6z — y+72=28, 20, 2x + 3y + 4z =7,

5+ By — % =0, Br + 6y 4+ 2= —11,

2r — 10y 4+ 5z = 1. o+ 9y + 2z =11, ~

z LY, 2 22. z + 9y = a, '\,I
gty o yte=b LD

z Yy =z ttz=c \

- ———— = 3 P

4 + 2 b ? ,,* }

x 2 m'\\.

5 tytg= 1. v

N .
23. Bolve exerciges [1. B, 26-35 by me@s,\of determinants.
155. Determinants of any orglér;’
The n by n array . , N
e e 25 TH
Qg L oy (1)
Fano e nn

- a¢
in which,there are n® elements arranged in n rows a-nd: n
columiy,”is a determinant of order n. The first subscripb
of arélement is the number of the row in which the element

Jies, the second subseript is the number of the colum.

“(The element a,5, — read ““ @ sub one-two "’ or “ a one-two,”
not “ g twelve”” — for example, lies in the first row and the
second column.) The value of the determinant may be
defined as follows: _

(1) Write down all possible products of n factors each that
can be oblained by selecting one and only one element from eat?h
row and each column. (According to section 142 there will
be n I such produets.)

(1) In each product count the number of puirs of elements
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wn which one element appears to the right of and above the other
(when the two elements are in their respective positions in
the determinant). Pairs of this type may be called negative
pairs, pairs of the other type positive pairs. If there vs an
even number of negative pairs, prefix a plus sign to the product;
if there is an odd number, prefic ¢ minus sign.  Since there
are no negative pairs in the principal diagonal (the diagonal
Tunning from upper left-hand to lower rlght -hand corner) ™,
and zero is an even integer, the plus sign is always to be
prefixed to this special product.

The value of the determinant 18 the algebraic sum af these
products. This sum is usuaily spoken of as the*éxpansmn
of the determinant. \

To illustrate the rule of signs, (ii) abo;ze,\\let us consider
the product aybye; from the third-order determinant (12)
of section 154. There are three pait of elements in this
product, namely, by, dats, brcs. ~OF these, only the first is
8 negative pair; consequently the 'product must be prefixed
with a minus sign. 3

C ,\EXERc:ss

k™ ‘ .

_ Show that the va-lue\of the determinant (12) of section 154, as
given by (11) of thsit-scction, is precisely the same as the value
obtained from t\hg \Jdefinition of the present section.

156. Propérties of determinants.
1. Tlhewalue of a determinant is unchanged i correspond-
mﬁ' 2008 and columns are interchanged.

\Leﬁ
@11 @iz *** Gin a1 Gm *** Om
D = a21 ﬁ_‘,zz LILIL I / 7 D’ = a,12 (an *°°* %2 .
+ . » - - . - ? . hd * . - * .
On1 Gpz *** Cun G1n Q20 *°° Oun

The products obtained from I’ are exactly the same as
those obtained from D, so that the terms of D’ are the same
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as those of D. However, it is readily seen that any pair of
elements which iz a positive pair in D is also a positive -
pair in D’. Ceonsequently, the signs of the corresponding
terms in the expansions of the two determinants are alike,
and the values of the two determinants are thus identical
It follows that for every theorem about the columns ¢f a
determinant there exists a corresponding theorem abowi
rows, and vice versa. )
I1. If two columns (or rows) are interchanged@he sign of
the determinant is changed. CN -
Let us consider first the effect of i)@t-ércha.nging two
adjacent rows. Obviously the prodicls composing the
terms of the determinant will be unchanged, sinee each 15
composed of one and only one el faent from each row and
each column. The only pairsoiclements of any product
whose statusischanged asfarasthe rule of signsis concemedlls
the pair in the rows interghanged. If this pair was a pos-.
tive pair before the interthange, it will be a negative par
afterwards; if it was a negative pair before, it will be 2
positive pair afterwards. Hence the interchange tran%
forms the number of negative pairs from even to odd or from
odd to ever( Thus, the sign of every term in the expansiol
of the d(?téfminant is changed; that is, the sign of the
deterriitiant is changed. _
.Ndﬁr let us consider the effect of interchanging any two
. 1".‘0%'8- Suppose these two rows have k other rows hetweell

o) them. Their interchange may be effected by 2k + 1 intet-

changes of adjacent rows: & -+ 1 to bring the lower 10V
into the position previously occupied by the upper, k more t(oi
bring the upper row into the position proviously occupr® 1
by the lower. But 2k 4 1is an odd number, and an o
number of interchanges of adjacent rows changes the S8
of the determinant. ' :

II1. If two columns (or rows) are identica
of the determinani is zero. :

Let D be the value of the determinant. AD interchang®

I, the value
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of eolurnns will give a determinant whose value is —D.
But if the identical columns are interchanged, the value
of the determinant will obviously he unaffected. Hence
D= —-D,0or2D =0,and D = 0,

IV, If oll the elements of a column (or row) are muliiplied
by the same number m, the determinant is mulliplied by m.
That is,

ey b
Mty by vl =m

(2] by
- » - - - -

’ . N
s b - \' \\
N\
< X

. <

" From the definition of the value of a deterfninant, as
given in section 155, it is seen that each termnin‘the expan-
sion of the new determinant is m times the torresponding
term in the expansion of the original deteﬁllnant That is,
the new determinant is m times the oiginal.

V. If every element of a column-{or Tow) is zero, the value
of the determinant is zero. O\

For each term in the expahsion of the determinant con-
tains the factor zero. .

VI. If each elemengedfany column (or row) i expressed
as the sum of -two o&nore terms, the determinant may be
expressed as the sy ef two or more determinants.  Thus,

wrd @] o b i by
AR NNUN I P SR B A

SN
For any term in the expansion of the determinant on the

& is equal to the sum of the corresponding terms of the

determinants on the right. .

VII. The value of a determinant is unchanged 1f to the
elements of any column. (or row) are added the co_we_spondmg
elements of any other column (or row) each multiplied by the
same number m. (Note that m may be negative, also that
it may have either of the particular values =£1.)
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Tor example, consider

a by - ay +mby B
D=l bg LR Y D= jas -4 ??’Ebg bg
By VI, ~
23] bl A 'mbl bl o I_\s\-

D =|as bg < bt mbg [ ( e
The first determinant on the right-ha.ngl.ﬁiﬂé of this last
equation is D; if by IV we factor m from the second, it
has two columns identical, and hencedy 111 is zero. There-
fore, D = D'. A\

P

157. Expansion of o determinant by minors.

If in any determinant, the row and the column containing
a given element are rémoved, the determinant formed by
the Temaining elemients is called the minor of the given
element. For@&ﬁple, in the determinant

’.\' 457 b1 s
AN a2 by €2 |
A\ Qg bs Cs
Q&
.the minor of b, is @2 e,
O - a3 C3

\ ) )
We shall now show how a determinant of any order cal
be expanded by means of minors. j -
TreoreM 1. If the element in the upper loft-hand o
of a determinant is a1, the sum of the terms involving Gt
in the expansion of the determinant is 11411, where A ¥
the minor of a11. ]
For each term of the determinant invelving @11 is Obt.ﬂmed
by multiplying a;1 by one and only one element from €8¢
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of the remaining rows and eolumns, that is, by a term of
its minor, A1;. Furthermore, the sign of each term of the
original determinant involving @11 is the same as that of the
corresponding term obtained by multiplying @11 by the
appropriate term of A4.;, since &1z forms a positive pair with
each and every element of 411

Trxoreym 11.  If the element in the ith row and jth column ~
of o determinant 1s @y, the sum of the terms involting ay oA
the expanston is (—1 VA, where Ay is the minor of Gy N\

The element a; can be carried into the upper left-hand
corner of the determinant by interchanging the ith row with
each preceding row in turn, and then interchanging, the jth
column with each preceding colummn in turn. Thig will not
disturb the elements in the minor Ay "'I’];te.‘sign of the
determinant will have been changed &< 1) + U — 1)
times, since the process consists of thisvnumber of inter-
changes of adjacent rows or columms:  Thus, if D is the
value of the original doterminantiand D’ is the value of the
determinant which has a; imtlte upper left-hand corner,
then R

D = (—1)-HED = (17D = (DD

But, by Theor@'\l, the sum of all terms in thg expe_\,nsio?

of I¥ involyidg a; is equal to @y times its rainor in .,
which is ). Hence the sum of terms in D involving a;
B (~ 1) a4, .
Buibining Theorems I and TI, we bave the following
method of expanding a determinant aceording to the ele-
ments of a column (or row): _
Multiply each element in the given column (.m' row) by is 7
minor, and prefic @ plus or MANUS sign according o8 the sum
of the number of the row and the number of the column i
which the element lies is cven or odd.  The value of the determi-
nant is the algebraic sum of these products. _
The value of a determinant can be expressed, thus, in &
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variety of ways. For example, if capital letters represent
the minors of the elements denoted by the corresponding
small letters, we have

. ayd; — @Ay + asds — oo, (1)
ay by ¢+ - or —b By + byBy — baBy 4+ 1, (2)
ag by Cp +o | = R
ag by €3 + - orad, — By +aC — :,\\\‘(3)

N\
N

\y"' evaluation by making use of some of the properties de-

or —txAy + BBy — (s +; .y .y (4)
The expression (1) is called the expansion  6Pdevelopment,
according to the first column, (2) is the.dgyelopment accord-
ing to the second column, (3) and (%) arc developments
according to the first and second Qt% respectively.

Example 1. ’ X QO

@ oo di .zf’:’“

a b o d2 ":"," es d by € di

as ba Cy gs ;_-:(11 b:; £z d,'; — s b;g [ ds

as by C}}«.:dq, by oy da by & s
\\ A by ¢

Faglb o d|—alb o da |-
N\% ba e ds bs ¢z ds

The :dévﬁ};pment can be completed by expanding the third-order
detertiinants.

2 8

S In a numerical case, we can often simplify the process of

veloped earlier in the chapfer.

\Exampfe 2,
Evaluate the determinant -
4 -3 1 0
2 3 6 7].
6 —3 4 5
-2 1 2 4
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SoLution.  Factor 2 from 1st column (Property IV):

4 -3 10 2 -3
2367_‘213
6 —5 4 5 3 —5
-2 1 2 4 -1 1

1
6
4
2

0

7 -
5
4

Select element. 1 in 18t row as a convenient one o use in reducs,

ing to zero the other elements in that row. Subtract twice ?;\td~

column from 1st eolumn {Property VII):

2-2.-1 -3 1 0 0 -

1-2-6 3 6 7| .| -l
2l 3_9.4 -5 4 5|2 5 =
~1-2.2 1 2 4 =¥

-\~

Add 3 times 3rd column $0 2nd column\Vv
. 0 —3+3.1 1 op] o 0
—1 343.6 6 _,| -1 2
—5 ~543.4 495 -5 7
-5 143.2\2 4 —5 T

N\

Expand according tg\m} row. Only one term in this expansion
Temaing — ag wagplanned — all other terms have the value zero.
\ </

"11 al 7 11 21
2 7 5|l=-2]5 7
O —5 74 5 7

’o

S\@tr/act 2nd row from 3rd:

11 21 7
2|58 7
0 0 -1

EXERCISES XVill. C

7
50
4

= 2(i1-7 — 21+ 5) = 2(—28) = —56.

Evaluate the following determinants by first taking out

factors common to rows or columns:

N
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16|36 22 ~48 60 120
27 10 8 7-95
-9 8 20 6 45
45 14 16 —1 35
12 4 -4 -3 15

158. Application to the solution of linear equations.

We have already seen that systems of linear equations i)
two and threc unknowns can be solved by means of determi-
nants. (See sections 153 and 154.) In order ta“show
that the method is perfectly general, we shall ﬁmiit‘ neces-
sary to use the following theorem: Q

TreoraM ITI.  If in the expansion of a determmnant accord-
g o a given column (or row), the clemenddof the given col-
umn (or row) are replaced by the eleméhls of another column
{or row), the resulting expression t5,identically equal lo zero.

For example, N°

'.

&1 bl 1 ‘e ‘j:'

G2 by C2 oS aidy —apds tagds — -,
b e :

AR AN

in which the ex’pa;flsion is according to the first eolumn.
If we replacerdhis a’s of the right-hand member by the cor-
l‘eSpondingiﬁ\ s, we have

O\
N bidy — 3?2112 + baAs I

ieh is the expansion of

bl bl. ¢ PR
By by, & o).
[ 637 G -

:This last determinant, however, has two columns alike, and
B consequently identically equal to zero.
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Let us now copsider the following system of % linear
equations in n unknowns:

ax + by + e+ =k
32$+b2y+023+'“:k2,
1)
G - bai Fezt = o N

To obtain the solution, if there is one, we 111u1f,ipl§{\f.he
first equation by A, the second by —A4s, and so &, where
" the A’s are the minors of the a's.  Adding, gve’*éi«gzt

(13 = @z + tady — -+ )2 + BrAyibds + b
- )y"i‘ (31A1 — C‘_JA4_2+63A3 — SRR
= klAl - k2A2 + CEEL '\x;.\\" (2)

The cocfficient of & is the expansion, according to its first
column, of the determinant, qu',,t.ﬁe coefiicients of the system
of equations, namely, &%

7| S oo
D =i“‘t 2] bg Cg
\\“ . e P .
The coefﬁpiéiﬂfs of the other unknowns are zero by Theo-

rem II:I.\:J.I‘he expression on the right of (2) is the expan-
sior\dgj.the determinant
O

N _ k1 by €1
~O Dy = ke by € A P

which is obtained from D by replacing the coefficients of 2
(that is, the first column) by the right-hand members of
equations (1).

Under the assumption that D = 0 we find

Dy
D

r =
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Similarly,

2 =

-

2
= 3:' H

2
'b_ ;
where Dj is the determinant obtained from D by replacing
the coeflicients of ¥ (second column) by the &’s of (1), D,
1s the determinant obtained from D by replacing the coeffi-
cients of 2 by the &’s, and so on.

Thus, if there is a solution of the set of equations (1'};\ ’

there is only one, and itisz = Dy/D,y = D;/D,z = ,D;',v{b,
It can be proved by actual substitution that this
really is a solution. \\

159. Inconsistent and dependent equations. )

The selution given in the preceding, sebifon breaks down
if D =0, since division by zero is meéaningless. If D =0
and any D; = 0, the equations haveo solution.

Suppose, for example, that Dj% 0, Dy # 0, and that we
assume the existence of a selution z = 2o, ¥ = %0, 2 = 2,

We should then haygne D = Dy. Butif D =0 a‘.nd
Dy ¢ 0 we have a conttadiction, so that the assumption
of the existence of a Solution is false.

A system of egagtions having no solution is said to be
inconsistent. J£%$ obvious from the preceding paragraph
that equation@(1) of section 158 are inconsistent if D = 0
and any Bl 0. If D = 0 and every D; = 0, the equa-
tions maj. or may not have a solution; that is, they may be
congistent, or they may be inconsistent. -

When a system of equations has an indefinite number
of Solutions the system is said to be dependent.

Example 1.
Bhow that, the following equations are inconsistent:

2&:—3y+53=3;
4r—- y+ z=1
33’;—-2?}—{-‘32-——'4.

N

[WA

Q.
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SOLUTION.
2 —3 5 3 —3 5
D=4 —1 1|=0, D=1 —1 i|=4
3 -2 3 4 —2 3

1% is not necessary to find D, and Ds, sinee if D is zero and even
one of the D; is different from zero the cquations are inconsistcn"t\.

Oy
Example 2. ' O .
Solve the following equations and show thaf ‘ﬁgey are de-
pendent: i '\\.“
3p—y+2% =100 (1)
T4y oz =@ (2)
52 + y + 4T @)
SoLutioN. Add (1) and (2)‘ -
S 4
dr L= 4, z= 433- @
o)
Bubstitute in (‘2j\\v
:’;\'.‘}"’4:"'33 . _8—3 (5)
§\\“ 4 +y+e=3, y~= 3

. W

N '.f’l%ese values of # and y in terms of z will be found to satisfy the
;{gsj}rétem of equations (1), (2), (3). Since any number of V?-lucs
\\ ““may be given o z, we can obtain an indefinite number of solutions;
and the equations are dependent. (The third may in fact be
obtained by multiplying the second by 2 and adding it to the first.)

Observe that the solution may be written

z = ¢, ¢ arbitrary.

Note that D = D}. - D2 = Da = 0.
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Example 3. _
The following equations are inconsistent, even though D = D,
=Dy=D; =0

3x— y+22=1,
6 — 2y 4 42 = 3,
9r — 3y -+ 62 = 0.

160. Linear systems with more equations than unknowns.

If a linear system hag more equations than unknowns:. a\
solution does not in general exist; that is, the system is
usually inconsistent. N

However, if a solution of certain of the equat i608 can be
found, and if this solution satisfies all of the remaining equa-
tions, the system is consistent.

If the number of equations is one m: \than the number
of unknowns, a necessary conditionfor the consistency of
the system can easily be derived. “For simplicity let us
consider the case of three equatlons in two unknowns:

alx+bly+cl = 0, 1)
oz, N2y + ¢ = 0, g;

%’é~+bay+03=0-

{(Note that theg cohstant terms have been written on the

left-hand sides of the equations. )
Supposethat equations (2) and (3) are cons:stent Their

soluthng&nll be

PR “\ ’ —Ca be by Cr
O ool b b ol A @
22 bg 15 bz ’ 01 -
az bs &3 bs
a2 —Cg as Cg
y = ag —C3 a3 Cs| _Bl, (5)
g 62 23 b2 Cl
253 ba

Qs bs

Q.
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Here Ay, By, €y are minors of ay, by, ¢, respectively, in the
determinant composed of the coefficients and the constant
terms of equations (1), (2), (3), namely,

231 b]_ 3]
D= o bg [ (6)
ay bs & O

¢\

If the system of equations (1), (2), (3) is consiftent, the
values of 2 and y, as given by (4) and (5) respegtiyely, which
are solutions of (2) and (3), must also satigfy {1). Bub-
stituting them in {1}, we must have o)

A
A B (O
SR by s = 0, (7
51 o, 1 C, ‘f' €1
or, clearing of fractions, * v
&14"1{“— .b.lBl + 0101 = {) (8)

+$ )
But the left si&é\of (8) is the development of the determi-
nant D ageording to its first row. Thus, if the S?}Wf’n O
(2), (3 0f~\three linear equations in fwo unknowns 1 0%
sistend; we must have D = 0.
T%e" corresponding theorem for the general case can be

4

,pfoved by the same method.
N

161. Homogeneous equations.

A homogeneous equation is one in which all terms are
of the same degree, otherwise it is non-homogeneous:
Homogeneous linear equations are equations all of whose
terms are of the first degree, for example. '

z+ 2 =0, 3z-—2y+7z=0
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A system of homogeneous linear equations

o +bhy+ezt =0,
st + by + ezt =0

an® + by + Caz + o =0, ~

always has the trivial solutionx = 0,y = 0, «+ s, a8 18 obvid )y
ous if these values are substituted in the equations. ()"
If the number of equations is equal to the number qf
unknowns, and if D, the determinant of the coefﬁtzients, 18
not equal to zero, this is the only solution; itD = 0 the
equations are dependent and the systen:l\\laas non-trivial

solutions as well. ) \ 14
Example. . O
Solve the system of homogene?};gl ’Iaii'uations: .
o4 279 82 =0, g;
AR ®
SoLUTION. W\e.if;ﬁd
a7 28l
Sl I

NS .
Thirs, there are non-trivial solutions.
Multiply (2) by 2 and add te (1):

Vé

e+ 76 =0

7
This is the same as (3), and yields ¢ = — £ 2 From (2),

7 _ _=
y=2x+22=2(-3)+22* 5%
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" By giving values to 2z, we can find any number of corresponding
values for z and y. For example, if 2z = —5, thenz =7,y = 4
All solutions are in the continued proportion

ziy:e=7T:4:—5
N
For a complete discussion of systems of linear equations)
the student is referred to Maxime Bocher, [ n!roductmta

Higher Algebra. O
EXERCISES XVHll. D (NN
Solve the following equations by mea:qs\ of determinants:
Lazdy+2=-2 2 2:1:\{—*2y-—3
v+z-+t=3 By — 2z = 6,
z+it4x =0 o ”52—4t=-—12,
t+z 4y =5 oY Bt 2=

3. 4v +3y+ z4+2=3" 4 S5zx+ 2+ z—-6=T79
62+ y+ 2+ 3630, dx — Ty +2z + 8t = —18,
dr 4+ 29 z-{izv—lo % 410y — 4z 4 ¢t =48,
3x+6y+2z t = —28. z 4+ 3y+ 2+ 9= —-3b

5.4A—3B\—.-20+7D——2
3A—'4~B-70—3D--b
2B—~ C —4D =13,
’~5}1~+53—3C+ D =13

j"B;'fL:cm by + B2 — dw. = —4,
N oz— W4 2%+5w=09,

2r + 8y — 2+ 3w =13,
3r — ldy -+ 3z + 2w = 14

Trzt+y—z=14, 8. 242+ 3244t + 5w =1%
y+2— t= -4, 2 — By + 4z — 5t + 6w = —10
2t t—w=3, ozt oyt 24+ i+ w=4
t+w— 2= —3, 3¢+ 4y +52+2A+ w=0

wtz—y=2 4z +3y — 2 — t—6w=0
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n7

Test the following equations for consistency, and solve

when possible:

5 x4+ 2y + 3z = 19, 10, 22 + 3y — 92 = 3,
4z 4 By - 6z = 11, x — By + %2 = —5,
x4+ 8y + 9z = 12, dx -~ Ty — B2 = —T.
il 3z — 2y — 8 = —3, 12, z— 2y + 5Sz= 0,
4z + 5y — 3z =19, 32+ y+ 2=15 ()¢
br — 4y — Mz = 7. 9:c~—4y—|—19z=10. 7\
185 +3y— z=1, 14, z£2%+3=0,8"
3z — 4y — 182 = =3, x-j—3y+5z-1
8+ Ty + 52 =4 3x—{-5y+7z==\2
5. z+ y+ z=1, T 6r -+ Gy 2= -8,
3x— 2y 2=0, 18m—12;z}~-—17z~-—39
10z 4 15y + 122 = 13. 42x+’3{}y— 7= —33.
17, 3z — 2y = —1, 18. ﬁx—- 5y = 44,
dr 4+ by = 60, 8:;-%—111;-——65
Tr — 3y = 11. \ 10:r, + 3y = —6
19. 3z +2y =1, y "20. 2 + % = 24
5z — 6y = 39, .\ 11z — Ty = 19,
2 — Ty = 0. \\ 9r — 2y = 23.
2L, 5z — 3y = 31) 22, 4x— 5y =2,
4o + Ty, .._\—41 —8x + 3y =—7,
11x—3g\~ 78. 6z 4+ Ty = —4L
) = 4, o4, 22 — 3y = 12,
Q:t—i—ﬁy—'? 5 + 4y =7,
~8z+9y-10 3z 42y = 3.
\25 S+ oy —82=2, 26 2-3=%
b — By +T7¢ = —6 Sy — 4z =95
9z — 11y + 5z = —20, 4z — bz = 6,
—8¢ + 2y + 62 = —16. 5z — 6y +72 =8
Obtain non-trivial sclutions, if they exist, of the following
equations:
2. 3z 4y—5z=0, 98. 5z +3y— =0
Y 8z 4+ Ty + 5z = 0,

Tw— 2+ 2=0,
de - 10y + 92 = 0.

3z — 4y — 182 = 0.

N\

A
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2. 2+ 6y~ 2z=0, 30.2+ 3y— 10z =0,
18z — 24y 4 43z = 0, z— 9y~ 8=0,
i8 4+ 3y + 2562z = 0. T2+ 11y + 22z = (.
3. W +3y—2:=0 2. z4+ y=0,
122 — 4y — 32 =0, y— 22 =0,
3lx+ 5y ~22=0 3z 4 5 =10, -
6 — 7z = (. \<\
O
O
3
\Q/&
N
/00
Nl
Q\\*
R
N
N
&
&
° |
O



CHAPTER XIX

Partial Fractions

N

oA\
162. Partial fractions. O
‘An algebraic rational fraction is the quotient{(of;two
polynomials. In elementary algebra the studentdéarns to
eombine such fractions into a single fractionwhose denomi-
nator is the lowest common denominator Of the separate
. 9. N
fractions. Thus, R

3 . 2 . R
x—2 w41 v(g;"ﬁ-=2)(a:+1)

In this chapter it will be shef¥n how to perform the inverse
process of resolving 2 rational fraction into a sum of frac-
tions, called partial fr}t&ions, whose denominators are of
lower degree. Tl:}is\ihverse progcess is often useful, particu-
larly in caleulug,\

A rational fniction is proper if its numerator is of lower
degree tha{l.\its denominator. An improper fraction cen
always 'ber reduced to the sum of a polynomial and a
pr OP@f;fraction by dividing the denominator into the numer-
atgtuntil the remainder is of lower degree than the denomi-

Swgtor; for example,

g
2$3+$2+2=2x+1+2:€+ .

2?2 - z' -1

exercises at the end of the
which have been
mmeon factor

We shall, except for several
chapter, consider only proper fractions
%‘educed to lowest terms, that is, having no co

W numerator and denominator.
319
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Methods of resolving rational fractions into partial frac-
“tions will be given without proofs. For proofs that the
methods are universally valid the reader is referred o more
- advanced treatises.
Four different cases will be considered, and will he
explainkd by means of examples. ~
163. Case 1. Factors of the denominator linear, ‘none
" repeated. O

For each factor of the denominator we 1hust have a

partial fraction having that factor as d@igéminator and
having a constant numerator. \%

N
Example. " x\ o
Resolve into partial fractions: ¢\
afel (1)
@ ,jfi';) (2z + 3)
SoLuTiON. Let {mg
}\..
WB-50@2+3) 2—-5 2043

We mugb;;}:)w determine the values of the constants 4 and B so
tha{t\'%t’h members of (2) will be equal for all values of z except
these' for which some of the denominators are zero. Clear

~ (2) of fractions:

Y

z+21 =42 +3) + Bz — 5). (3)

Method 1. Since both members of (3) are equal for all values of
% except possibly 5 and —3, by the corollary of section 109 they
are equal for all values of z, including 5 and —%. Setz =51
(3} (to malke the coefficient of B equal to zero):

2 =134, A =2
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. Sl .
Set 2 = —32 in (8) (to make the coefficient of A eqtial to, zero):

- b "
39 13 - YA
et — —-B [ p— ) _.\\ .
e~z h PR o
Thus’ . AN '..-'.a'_ . o \:.
z4+ 2 "2 3
4)

{# — 5)(2z + 3) ~z—5 %+8’

. . o . AY,
as can he verified by combining the fractions in the right membér, ™

of (4). \
Two values other than 5 and —§ could have been givé to ,
and two equations in A and B obtained and solved. The advan-
tage of assigning these values that eause the factors of the denomi-
nator to vanish is that the resulting equations.cotitain only 4,
and only B, respectively, and can be solved'\for these constants
{iil‘ect]y. o N

Method 2. Expand (3) and collect termis:

NS

r+21= (24 + By + 34 — 5B. (5)

Bince this is an identity in the coefficients of like powers of @
are equal by the corollaryef section 109. Thus,

N\

A \ZA + B=1, (6)
;7 34 ~ 5B.= 21. .
Equations (6§(have the solution A =2, B = —3, yielding the
same resgk\as' Method 1. '
164~.\'C€ise 2. Factors of the denominator linear, some
\; “repeated. _

or each tepeated factor such as
a series of partial fractions:

Ay Ag Ar
:c—-a+(x—a)2+ +(-’v""f‘)k

The constant A, is not zero; the other A’s may or may not

(x — a)* we must have

N

;
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Example

Resolve into partial fractions:

T2 4+ 3x 4+ 2 .

1
{x — 2){z 4+ 1)* W
SoLvrion. Let N
»N
T2t +3x 4+ 2 A B C A\
= > 2
ry Tyl e ey
Clear of fractions: ."‘;\i
T2+ 324+ 2=A@ 4 )z —2) + B({'{;— 2) + Cz + 1)%
Setxz = —1: 6 = —3B, Bz\r—- -2,
Set x = 2: 36 = 9C, NE = 4,
Setz =0 2= —24 7.2B'+ C,
24 = —2“-—}{2'8 + C =6, 4 =3

Substituting these valuss.of 4, B, and € in (2) we get

wikdd 8 2 . ¢4
@-2@+1)* «+1 (@+1)° z-2

A%

We haveused Method I.  Note that after setting ¢ = ~1and

v = %ﬁ?"ﬁich values cause the factors of the denominator t0

vanish, it is necessary to assign a third value to z since there are

thiree constants (4, B, C) to be obtained and three equations 8¢

~{pecessary. The third value chosen was » = 0 as this value 3
’ extremely easy to substitute’

165. Case 3. Factors of the denominator quadratic, none
repeated.

By a quadratic factor we mean here a factor like o2 + 4
or 2* — z + 2, which cannot be factored further into 1€
linear factors. For each such factor, such as a2” + br + 6
we must have a partial fraction whose denominator is that
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factor and whose numerator is linear, namely,

Az +B
ax® + br + ¢

Here A or B (but not both) may be zero.

Example. A
Separate into partial fractions: :;'\; )
wose kIl N
(z — 1)+ 4) ""’z\\.
Borvrion. Let o PN
¢ :
— ‘ ¢
4 —5z4+11 4 > Bx+ C (@)

@— D +4) z—J o+

Clear of fractions:

&3

42 — Bz 411 = A ) + Bz + Oz~ 1), @)
i2t— 5z 4 11 — (A £ B)rt — (B—Cz+4d—=C &)
\5,' . .
We shall use a combiftation of Methods1and 2. Setz = 1in (3):
SO 10=54, 4-2

Y o
Equ&tin%?@éfﬁcients of like powers of « on the opposite sides of

(4), we i

'\
a\Y4 = 4
) A+ B y
\ B-C= 5;
44  —C=1L

sinee we have already

Only two of these equations are needed, ¢ = —8. Thus, (2)

found A = 2. We readily find B =2
becomes .

4z — 5z + 11 2 2 -3, (5)

Eerap——

(1:—1)(:&24-4)._-37'_1 22+ 4
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This exercise can also be solved under Case 1 if we use the

imaginary factors of 2 4 4, viz.,, (z + 2¢){z — 2:).— Thus, let
41:‘3—5:04—].1: D E I F .
(@—D@*+4) z—1 242  =2—2

S+ 1ll=DE+2)—-2) +Elx—1)a—2%)

+ Flz — L) +2)

(6)

Setz = 1: 10=5D, D=2 O\
Set x = 2: —5 — 10{ = (—8 — 4)F, O
5(1 +20) 443 §
F=Zetn = 4 *lfif@?"
Sebo = ~2i: —5+10i = (=8 + 4B,
g B2 47533_1_%
42—-4¢ @& - 4
Substituting these values in Qﬁ*), e get
Ay _3, 142
e T T Y )

($—1)(x2.\i§§:4)=x—1+a:+2i tiow
Wecan combin,é the last two fractions into the single fraction
o 2% — 3
,\ Py

amﬂﬁ%) reduces to (5).

1 66 Case 4, Factors of the denommaior quadratic, some
repected,

For each repeated quadratic factor such as (aa® +b%
+ ¢)* we have a series of partial fractions

A + By g+ B, o AwtB
ar’ +br+e¢  (ax® +br4¢)? (az® + bz + ©)

in which A; and B, are not both zero.
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Example.

Resolve into partial fractions:

3xd — 43 + 1322 — 11z + 23. (1
DR

‘SoLumion. Let the fraction (1) be identically equal to

A  Be+C, Dz+E o
:c—3+.1:’+2 (x? - 2)* @

Clear of fractions: ,"‘.'\\

Jzt — 42 4- 1322 — Y1z + 23
=A@ 4224 (B2 4 O~ 9 4*\%\
+ Dz + E)x—3)
= (4 + B)zt — (3B — O)e® + (44’ £2B - 3C + D)*
+ (- 6B+2C—3D+E)m+4A-ﬁc 3E. @)

Equate coefficients of like powers of z!

o

A+ Bx} = i}'
— = &
R =13,

44 ¥2B-3C+ D
“&eB—20+3D- E=1,
«iA - 6C — 3E = 23.
These equ'%ons have the solution
A‘ 2 B=1 (¢=-1, D=0 E=-3

Consequently from (1) and (2) we find

3 — 4o + 1322 — 1o 423 2 +f_”_1,__,_.3__§.
3@ 1o  z—-3 @#+2 @&+2

ethods 1 and 2 might be

In thic acant ination of M
n this exercise a combination & 3 in (3) to find 4, then

considered preferable: Substitute =
Proceed as above.
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EXERCISES XIX. A

Resolve into partial fractions:

L Sx — R 2 3r — 14
"m-DE—-2) "z + 2)(z — 3)
1 T
3 . 4, — - . "
(@ —5)(z — 6) (z — 5)(z ~ 6) O
x4+ 4 x4+ 4 <O
. 2t — 4 6. ot — 4z in"\'
7 7z~ 3 8 Tx 4+ 10
"o — 42— 3) "z +2><3r¥4)
9 16z — 27 10 S~ 1 '
" (2x +3)(5z — 1) " (584 2)(25 +5)
9z — 28 O 32 + 2
, — . g =T
1 22— 6+ 8 {El;':*:c2+4x-—12
1z — 12 O 9z — 29
i3, — =, Y g
3x2~—9x+18 “< 1 62+ — 12
6z + 37 .al'f;\ %z + 23
15. —x<§- 16, — — .
1222 — 71lo— 8z — 26z 4+ 156
5L ,m: + 22 18 1 ]
(x -}r"i)(.’v — 2¥{x — 4) "z — 1){z — 3)=z — 9)
§?£—2‘3r—|—12 2? 4 21z — 18
19, AN e —, 20, —
A
»\ 9% — 3 6z + 11
1.  ————— %
N T 2 e+ o
93 4z — 212 + 7 o4 :z:2—1—27x—|-75.
"z + {x — 3)2 * 4% o 1027 + 252
25z 8zt — 162% & + 7
25, . A LT
@ —2)(2z +1)? B e < 2
o7, 2. 98. 3 44

(x — 1){z* + 4} (x+2)(x2+2x+3)
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29, w7 . 30 M

3@ —8s 45 @—#ts
31, 4z’ : g 9

@~ 1@ +4) Co- 2+

x r o

BErt #wryy

o -1
B Ery T Py TY Oy
. 30 : ' O

@ — 2)(=* +2)° AN
g, 145+ 70 + 2627 + 100 43 Y

(x + 3)(2x% — z + 3)? W

R A

&+ 276 + 2 @R

Ba7 — 1025 — 4zt — 1628 — 20 -
@ = Ui+ 1) &Y

Reduce each of the fo]iow:iﬁ’g improper fractions to a mixed

expression (see section 27) in which the numerator of the
i the denominator.

fractional part is of:}ower degree than
Then separate the\fs ctional part into partial fractions.
N N L -

”

xz-l—o:—‘,g'“.’ T 28z —10
@ 2830 — T2 + 30 fo® — 1722 — 81z — 24
+ \"\ . 45. . .
RN (2 + 1)z —4)
@ = | 62° + 1
msi'-__-_._g_:-t——t—ﬁ . ——————————
De-tto Y G+ e +2
g8, 83+ 1227 = 54z? + 38z — 21
(z + 4)(2z — 1)°
g9, %t 4 62° 4 1222 + 62 — 3
@z + 3) (@2 + 3)
¥4+ 1 #+8

50, ————
0 51':33—-2:“-!-3:!:

.xs_l'
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CHAPTER XX

Infinite Series

.\:\’
167. Sequences and series. O
A sequence is a sct of numbers arranged j in\a " definite
order, for example, the terms of a progressiom, or the set
of positive integers. ' '\
A series is the indicated sum of a}iequence Thus, if
the sequence i3 ay, 42, g3, + + +, Gy, ¢ ¢ series 15
a + az + as +,j. OF a4
If a series is the sum of 3 hlmted number of terms it is 8
finite series, if it ignthe indicated sum of an unlimited
number of terms it\s an infinite series. In this chapter

-we shall conmde(\mﬁmte series,

A series may be defined by means of its general or nth
term. For\eXample if its general term is @, = n/(® + L,
we find xby assigning to 7 the successive values 1,2, 3, -

\‘.

a3
N

iy =

b=
> o2

“ 2
; 2 = 5y g = o,
3

Consequently the series is
1,2 3

On the other hand, a series may be defined by Se\.reral
terms, from which the law of formation of the terms 18
398
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be discovered. TFor example, in the series
R
2 + i + 3 Foeen

1

we see that @ = 3

ag = ag = % . Therefore we con-

1
53

cude that a, = 1, ' ' R
27 O

EXERCISES XX. A \ m\‘ -

Find a formula for the nth term of each of the series in
Exercises XX. B, pp. 339-341. R

168. Limit. NN
Consider the unending or inj[jﬁfte sequence

Sl! ‘SSZ{\' ‘ Sm .

If there is a number\S\such that, beyond a certain place in
the sequence, the«iaf)solute value of the difference between
8, and S is gfanller than any positive number named in
advance, {lexﬁ s called the Limit of the sequence. We write

‘” "'S\ ].im Sw. = S )
:n\:; “_-_m
~O _ .
Which may be read  the limit of Sy, as n increases without
limit, is 8.” .

For example, in the infinite geometric progression

1 1 1

let 8, be the sum of the first n terms; we then have
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S =3
sebrbebl g
Snw§+i+...+§1;=1_%‘}‘m

:\

The limiting value of the sequence 0{8’5 is 8 = 1; for the
absolute value of the difference bejm een S, and S namely

o can be made smaller than any positive number named

in advance, by taking n sufﬁuentiy large. Thus, if we wish
to make this dlﬂeren&é Jess than 0.001 we have merel); to
1024
which is lesg t‘h}n 0.001. Consequently, any of the terms
from 8y, on (differs from 1 by less than 0.001.

1
taken = 10, or auxmteger greater than10; for o0

169,,\®nvergence and divergence,
«hi‘}iny series,

W\Z“\;'; ) al+ﬂg+o--+an_l+aﬂ+.-.’ (1)
~ let S, be the sum of the first n terms; that is, let
Sy = a,
Se = ay -+ a,,

* .

By =a +a+-ee+an,

If S, has a limit S the series (1) is said to be convergent:



1170 NECESSARY CONDITION FOR CONVERGENCE 331

The limit S iz called the sum of the series. (It is not &
“gum * in the ordinary sense, but the limit of the sum of »
terms as n increases without limit.) A series which is not
convergent is said to be divergent.

An cxample of a convergent series is an infinite geo-
metric progression in which the ratio is numerically less
than 1. -

As an example of divergent series consider an arithmetig\ )
o

progression, C
24548+ 11+ .\;T '
or a geometric progression whose ratio is greater than 1,
A\
o )

L+2+ 448+ 4"

The sum of » terms of either of\these series is seen to
increase without limit as we takefnore and more terms.

170. Necessary condition. beréonvergeﬂce-

TrroREM. If a sepiés ‘is convergend, the nth
proaches zero as n inéréases without limit.
Consider the seties

term ap-

2K \
Pl oyt et Gt Bt

O\Y
with t.he%}n's. _ \
I.‘ e:GfSn be the sum of the first n terms. Then

V Gy = Sn — Sn1e
Thus, i a, = lim (S, — Sas) =8 — 5 = 0. (It is as-

Sumednil’ere tha.tn:};oe Jimit of the difference between 8, and

8. ; is the difference between their limits.)

Thus, a series is divergent if its general or nth term does
not approach zero. On the other hand, the fact that t.he
general term approaches zero does pot imply that the seres
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is convergent. In other words, the condition lim u, = 0is

n—0

necessary but not sufficient for convergence.
For example, consider the harmonic series (so called
because its terms form a harmonic progression),

1 .1 1 1
g [ Eit W M SR Sl TR
S R R e

o

AN
o\

1ts general term approaches zero, yet the seriesjsj‘:di\fe’rgent.
For the terms may be grouped as follows: (™

1 1 1 i1 1 1.~.\(1
14 - -4 = S I E S |\ 3 il TR
+2+(3+4)+(5+6+7+\8)+ 9+

But

S+
5

1
6

i

5t
L

ok
R,

)

)

- >
8

> Feen )

1
aT

P | =t ~:/‘

¥

[

1. 1.1 1
st tats 2

and so on. W@ can form ag many groups of terms as We
wish, the sum’of each group being greater than 4. BY tak-
ing enough’groups we can make their sum as great as We
pleagel" The series therefore diverges, since S, increases

without limit.

:\’; 171. Fundamental assumption.

s
h
\:

If 8, always increases (or always decreases) as n nered

SE8,

but always remains less (greater) than a fived value A,. m_“’
as n increases without limit, S, approaches a liml which ¥
not greater (less) than A.

172. Comparison test.

The following theorems are often useful in esta

blishiﬂ.g

. . . i
the convergence or divergence of a series by comparﬂlgt.
with 2 series which is known to be convergent or divergef®
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TaroreM 1. If each term of a series of positive terms 1s
less than or equal to the corresponding term of a convergent
series, then the given series is convergent.

Let the given series be

T N ¢
and the known convergent series, with sum be R \:}
by by b N
Let \
S, =ay+a+ ot O ’ (3)
S m by bbbl @)
Since, by hypothesis, a; = b; for a]lvahles of k, we have
S, = S’ %
Bt S 8. ©®
Tt follows from (5) gm'\}‘e} that
\ s, < &, | (7)

I
and conseq@;ﬁﬂy, by the fundamental assumption, the
@ Series‘(’.l')\is convergent. .
_ Temoresm II.  If each term of a series of positive terms
Grégter than or equal to the corresponding term f_Jf a divergent
$er1€s of positive terms, then the given series is divergent.
For, if the given series were convergent the second series
would also be, since each of its terms is less than .the
torresponding term of the first series. But this contradicts

the hypothesis that the second series is djv.tergent-
In comparing two series it is not sufficient to combare

a few terms at the beginning. The general terms must be
Compared.
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Example 1.

Show that the following series is convergent:

T
+2'2 3-2¢  4.2° n - 2

Foe )

SorurioN. Compare with the convergent geometric sdries

{see section 168), Oy
A\
11 _
1+§+a+"‘+2“_1+"’:5‘. @)
. '»‘:\\'
" Each term of (1) is less than or equal to tht.Corresponding term
of (2). Hence (1) is convergent. N

:"\ ¢
Example 2. AWV

S

Show that the following sern};i& if:’divergent:

1 1
T — a0 e (L
SV v i v
AN\

SoLyuTIoN. E&H;tel'm of (1) is greater than or equal to the cor-
responding tetm of the divergent harmonic series (see section

170}, N
"\x«\ . 1 ]
\’\\, 1+§+§+...+H+..._

\} Hence (1) is divergent.

Note. The convergence or divergence of @ series €3 unaffected bY
omiiting {(or inserting) a finite number of terms. For this merely
changes S, by a fixed constant for all values of n. Itis Of’f*‘m con-
venient to neglect several terms at the beginning of a series.

173. Uselful comparison series.

The following series will be found .useful in maling
comparison tests:
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The geometric series,
etar+attad . tamt 4, (1)

convergent for | r | < 1, divergent for |r| = L.
. The p series,

1 1 1 '
T = e — e 21,
+2p+3p+ + =4y (2) ),

n?
tonvergent for p > 1, divergent for p = 1. A
If p = 1 the series is the divergent harmonic seties,
If p < 1 the series is greater, term by termy-than the
harmonic series and is consequently divergenis
If p > 1 the convergence of the serigsgan be established

A

as follows: Pa\4

4

"¢

11 XM 11 ﬂ(_l_)i
et O < e T\
AN/ . . .

¢ +1 1 1 __I__I_.(__];—-)z—-{--'-. (3)1
.} é} + g;, +-- < +.2p-1 991

\ 3

But, the expression. on the right side of (3)isa converg}:nt
geometric series, since its ratio, 1/27” 1 js less than 1 W 1en
?>1. Consequently the p series converges when p > 1.

174, Ratio test.

?HEOREM. If, in o series of P
'+ Yith term to the nih term approaches

ositive terms, the ratio of the
e Lmit B as n
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increases without lumat, then the sertes 1s convergent if B < 1
and divergent if B > 1.* If R =1 the series may be con-
vergent or may be divergent.

Let the series of positive terms be

61+a-2+03+"'+an+(1n+1.—1‘"'- 1)
N
If R <1, choose a number 7 between R and 3, (he.,

R <r < 1). Since, according to hypothesis, R\

. [ R
hm.fi-:R, ~

A7)
proues. T i W
o\
)

then, by the definition of 2 limit hare is a term in the
series, say az, beyond which .3 faiis less than 7. Thus,

~~ N/

. O
ol Y T, O Mpy1 < &yl
ag - .».,’; v
Ario N\ : 2,
— Ty or ak+2 < ak—l—-IT < aAgr”;
KA
-3 ¢ '\.} .
35w, or Qrys < Qppa?t < ar;
B2y,
N )
étyts now compare the series
N\
R\ 2
A apr1 + Geyz + Qs 00 @
with the series
' . 3)
ayr + ar® e

Each term of (2) is less than the corresponding term of (3)-
But (3) is a convergent geometric series, since 7 <
+ It the ratio becomes larger without limit (which may be ml‘)i:"‘?lgafd?é

bolically, B— « ) the series is obviously divergent. This may
- under the cage & > 1.
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Therefore {2) is convergent. However, (2) is the original
series (1) with the first & terms omitted, and consequently

(1) 18 convergent.
) _If B > 1, choose s number 7 between Band 1 (e,
R'>r>1). As before there is a term, say & beyond

which we have

Org1
o A
"

a P\
A2 s, or  Ogpz > GepT ﬂg?’%i§<.

Qg )
a’ - -
M s p, o Opgs > 0T e
Gt Qg
. . - C N ~§ L]
Comparing the series ONY

o e @)
Aps1 +§1io’}2 + anys t+
S
with the geometljicféerie.s
N
> . . AP 5
\;:\; ayr + o o Ht ,- )
QO :

\vhiehiéiﬁce r > 1, is divergent, We establish the divergence

Y and consequently of the tested series. .
it R =1 we can draw no conclusion from the ratio test,

. . h

since, as the following llustrations st{ow, therela are bot

convergent and divergent series for which E =1
Consider the series

. 1 1 _1- ‘I.__l__]_'_[_.--_ (6)
1+§+§+4+ n

> r, or ak-}—l > akr; . :\,,l
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For this series,

. 1
= lim —— =
e 1 Q8
1+ = R
n ¢y
,.:\ 4

The ratio test fails to give any information cmi erning the

series (6). It is, however, the dlvergent h\u,momc series.
Consider next the series

\\\

T

Here N\

“1,;“ 1 ) n \

R T ATV - i ()
2

hk —1— = 1.

)w-mo

¢ 1+ -

.'s;w 7

i\‘

Th&\ratlo test gives us no information concerning the series
~\('¥) However, (7) is the p series with p > 1 and is con-
\\ “vergent.

Example 1.
Apply the ratio test to the series

i, 2 3 4
ptatatat:
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SoLUTION.

- ntt
R:hmc+léi)im”+

f—0d 2"+I' 2“ ] 2“
1 1
i T n 1
= lim ==
n—n 2
Since B < 1, the series is convergent. L@
O
Example 2. ,\’(i\
Apply the ratio test to the series RS,
N
2 22 23 X ,\
+ + + + A
12 N
SoLuTioN, . ‘;IZ.‘

gntt ol n )2 -2
R"hm[m+4y<*} £ﬁ29+4

Therefore the series is \dlqergent-
7N

,(3“ EXERCISES XX. B

Determme whether the following series are convergent or

dwcrg%&t
Lidk¥+i+d -+
2\)3 ot 1 1z + a8 +T§§ +
| YN S R ST
41+%+4+%+

1 1 1
5, 1+§—2+§+Zﬁ+._”°

1 1 1 1

8. — —+
13%3.3 57+ o
1 2 3
22+§+E+5 -+
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1,2 3 4
8'§+:9,_2+3_3+34+”"

1 1 1
Sttt ate e
10, 1+ = b+
T ve VB Vi A
Vo V3 Vi
TORE RN SR SIS e
2 3 4 O
1 1 1 1 N
12, — 4 —— f— F ——
2-4+4-6+6—8+ -1U+ '\'\.“
Pl \:m\
i1 1
1311+-2_!+§-1+Z_!+' :“\\‘;
12t 3 4! \\
Uptwetwto T
2 02 93 O X N\
RS TR TR TR
1 1 N1 1
Bz 1ts @Fy 1+52—1+
1 1 1
i7. e -
22—1J:f'§9~2+42—3+52—4+
AR 1 1
18. —==%
’9\331+23—2+24—3+za_4+
\ R 1 1 1
M\::\}'1—0.[}1+1—0.02+1—0.03+1—{J.04+_
Vo, 1 S S BN Y
1401 1402 1403 1404
1 S | 1 1 :
21. ___1._.--.
(1+0.1)2+(1+02)2+(1—1—U.3)2+(1+0.4}3

22, 3logi02 + 1logio 4 + §logio8 + g logo 16 -~
1 1 1 . 1
' fogio2 * loged  logwd  logn b
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e T T
" lOglu 2 logm 4 logw 8 logm 16
25, logie 3 + login i -+ logm% -+ IOgml—lG- + -

175. Series with negative terms.

A series with all of its terms negative is not essentially ~
different from a series with all of its terms positive. Thus,
if the series ' <\
'\
a1+ g a3+ ’,"}‘(1')
in which all of the o’s are positive, converges o the imit S,
then the series ' \4

I S -

obviously converges to the limit <8 Furthermore, if

(1) diverges so also does {2). &% . :
The case in which some of théberms of a series are posi-

five and some negative preserits s different situation, which

will be digscussed in the P.Qit few sections.
£

176. Alfernating sefies. a
An altemating‘séries is one whose terms are alterna
Positive and negative. .
THEOREM\';.\A?@ alternating series is convergent "'-_f the absq—
lute ml-ue@ﬁ each term is less than thot of the ?{fmdm.g’ -and ¥
the limgbf the nth term 1s zero as 1 incTeases withowt limat.
_Letythe given series be
\ ) |

tely

al—ﬂ3+aﬁ_'a4+“" (1)

The sum of an even number

in which the @’ itive.
ch the a’s are positiv e written in either of the

of terms, say 2% terms, may b
following two forms: '
Sy = (a1 —az) + (@ — @) + 7 + (@

— (g2 — aset) — Oz

- aﬂi)r (2)
3

Sﬂk:ﬂl‘”(al—‘as)_"'
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Since @, > @ny1, each difference in parentheses in (2) and
(3) is positive. Then (2) shows that S.x 15 positive and
increases as 2k increases, while (3) shows that Sp; s never
greater than a;. Therefore, by the fundamental assump-
tion of section 171, S,; approaches a limit S, which is less
than or equal to ¢;. Equation (3) shows that Sis a-ctuall}(
less than a4. BN\

Now consider the sum of an odd number of termsi )\’

N
N

Sory1 = Szx + gkt (,}.

N

We have already shown that Sg; apprpafehés a limit §,

and by hypothesis az; 11 approaches zerd, “Therefore S

approaches S. Thus, whether n isx;&iﬁl or even, S, con-
verges to a limit S. \“

v

N/

Example 1. N

Show that the followingvs,fei‘ilés is convergeni:
15 1’+ 1ol
2737 '
-
-Sovurion. (The series is alternating, and the absolute values of
the ath and\{& -+ 1)th terms are, respectively,
~0 1 1
Nl W= e T Y

a3
N

M\:is};that g1 < an  Also,
7

. - .1
lima, = lim - = 0.
Fpid P

Therefore the series is convergent.

CorOLLARY. If the absolute value of each term of an c_ait@'?'-
naling series 4s less than that of the preceding term, a??{f if the
~ imit of the nth term is zero as n increases without lm, thet
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the error made tn taking the sum of the first n terms Jor the sum
of ihe series is less in absolute value than the (n + 1)tk term.
Given the alternating series,

Ay —~ s+ a3 — ag -

with the a’s positive, But1 < @y, and lim a, = 0. If § is

the sum of the series, and 8, the sum of the first n terms~
we may write . O

e
77
%

]S"Sn‘=0»n+1 aw-{—2+an+3 Opta + +
= g1 — (Gnyz — Gnga) — (Gnpa = %)

Since the differences in parentheses are,_p,osiﬁve,

W

]S "“Snl < a‘ﬂaj—l:‘3

This corollary is useful, if We are using an alternating
series for purposes of computa,tlon, in determining the
accuracy of the approxxmatmn

»~\
. Example 2, &«
Censider the alterhating series,
</ !
1 , :l =1 . 1 | g cuat
1-52»@}2_ e (1) 2,‘_1-!-{ »3 )

AN
which satisfies the condltlons of the corollary.

Thé serles is an infinite geometric progressxon whose sum is
WI +1) =2 The sum of 7 terms of theprogression is

N\
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The error made in taking the sum of n terms for the sum of the
series is

ICHIR RS SRES
3 2 3 3\ 2/ 3 2

This error is less in absolute value than the (n =+ 1)th termy
(=1)~/2~
To illustrate with a definite numerical value of 7, let us.take

n = 4. Then the sum of four terms of the series is )

¥ 4 :
S 3

at & i

1-— ‘."\"

+

g | =
He |
00| —
mlvl

Subtracting the true sum of the series, w\e'.\l;}eﬁre for the error,

5 2 OF
8 Jo0v 24

e

N L3
This is less in absolute va:hré than the 5th term, which is 1/16.

177. Absolute and'donditional convergence.

THEOREM. | A Series with both positive and negalive terms 8
convergent if(iie series of absolute values of tls terms 1§ com-

vergend. ON
Let thé-given series be
RN R R R W

"‘\\ N/

/. L ¥ e I 3 b
/in which some of the a's are positive and some negative.
The convergent serics of absolute values is, then,

lay |4+ lag| + -+ lan]+ 0 @

Denote by S, the sum of the first » terms of (1), by P,
the sum of the positive terms among the first # terms, an
by N, the sum of the absolute values of the negative terms
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among the first n. Denote by S; the sum of the first »
terms of (2). Then

8, =P, —N, 8 =P,+N, (3)

By hypothesis S, converges to a limit, say §'. Sinee (2) is
a series of positive terms,

S, =P, + N, <&
for all finite values of n. Hence
P, < S": N, < S "\\

Moreover, since P, and N, eontinually. inerease with n,
by the fundamental assumption of section 171 they ap-
proach limits, say P and N respectively. Thus,
lim S, = lim (P, <<M») = P — ¥,
[n— B N
agsuming that the LHmif of o difference is equal t0 the
difference of the limitsys That is, series (1) is .convergel.lt.
A series is said o°be absolutely convergent if the series
of absolute values of its terms is convergent. If 8 series
with both pesifive and negative terms is con_vel‘gent: but
the series éfyabsolute values of its terms 18 divergent, the
given se{:ie}s is said to be conditionally convergent.
For\example, the series
AN

m\‘:“' 1 1
V 1__1,+-__—§;+--'

is absolutely convergent, since the series
1 1 1 - ® ¥
1+ o + o + o +

18 convergent.
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The series

is conditionally convergent. We proved in section 176 that
it is convergent, but the series of absolute values of ifs,
terms is

O
I, -1 1 e\
1 -3 —_ -— .o \.
+ 23+\3 "l‘ 4 + ? (‘}’"
the divergent harmonic series. ."‘;\.\
178. Ratio test extended. N

TusoreM. If in a series of repl &rms the absolute value
of the ratio of the (n -+ 1)th termi’id the nih term approaches
a limat B as n incregses wzjth,(mt limil, then the series 1§
absolutely convergent if R <Y and divergent if R > 1. If
B =1 the series may be convergent or may be divergent.

Bince R is the lunlﬁ of the ratio of the (n -+ 1)th to the
nth term of the sexies'of absolute values, by the Theorem of
section 174, th.l&enes of absolute values is convergent
if R <1, That is to say, the given series is absolutely con-
Vergen'b if R < 1.

O 1 each term, after a certain place in the series,
b& numencally greater than the preceding, and conseé-
qtmntly the general term does not approach zero. There-
~fore the series diverges. (See section 170.)
) HR=1 no conclusion can be drawn.

EXERCISES XX. C

Determine whether the following series are convergent of
divergent:

1 1 1

——

1. 1_%-—}"\3/‘3‘ ﬁ-‘i-ll"
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2r—-¢+5 -+
-3+ —5+--
L1 —34+%3~++
1 2 3 4
B, — - = o= e
92 3z+42 53+
61— 4L 1
1401 14+02 1403
1—10 2—10 3-10 4-—10 AN
7. - 3—10_4~10, ...,
2 5 T 5 T
8. Iogm‘/é—logm\s/a%—logw\‘/— logm‘\/§+
9. logi 3 — logne 3 + logo 1 — log 3 + - . ...\"’
10. logyo 4 — logu § + logo 3 — loguds +* \V
1 1 1 1 N\
11, — P~ L
1701 1402 1403 1+.0>¢~~
. . 1
1-01 1—002 1—0003 1-00004
1. (1 — 0 nr—(1-— 001)2 X (1~-— 0.02)2 — (1 — 0.03)*
+
14, 2—”2 — 3 13 4. 4714 _ﬂ\s-us_!_
i 1 \’ -1 1
15, B L R S
2 — V2 37-;7;4_4—\/1 5- V5
\/I (572‘ ‘\/g \f4
18, - _+___,__-_.___,__x-/—.-,+
2—\/3\3 Vi 4-+5 5—V6
W pd
17. 2< 22 22
2~ 3.4  4-5 5-6
s ‘11 21 31 41
\ 100 (100)2 + ooy~ (00)*
179. Power series.
A series of the form
Al 1
o ez + e’ o FeT T @
geries in .

in which the ¢’s are constants, is called a power
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A series such as

00+61($"""a)+62(33—0)24—-"“}-‘0“(.’5—&)“'{"", (2)

18 & power series in x — a.

The set of values of x for which a power series converges
is called the interval of convergence. This interval of
convergence can be determined by means of the extgn(ied

form of the ratio test. \ N

Example. : N

Find the interval of convergence of the fo]lqw'in'g'series:

i )
150"
v x\ e

SoLUTION. « W

®)

z2 gl
$+§+“3—+

<N
R N

x!‘H—l

R
B = lim = Z9= lim
n——mﬂ+l ~?r§" n——)ﬂ:n+1

el =2,

The series is convergent ¥ B < 1, thatis, if | | < 1.

The end values, "4 1, must be investigated separately. For
Z = 1 the series/is, the divergent harmonic series, for 2 = —1 it
is & convergedtalternating series. Thus, the intcrval of con-
vergence is,\)

;"\'" '_'1 é € < 1.
Nl
SN EXERCISES XX. D
) Find the interval of convergence of each of the following
series:
x?

z S r  x*  ad oz
1. - e el M =
2+4+6+8+ 412+23+32+42+
x

2 o8 :
2.1+§+§*+2_7+'.“- b 1zt ot b4 --n

x?  g?
3']_..x+__.i_§+..._ 6.1--.1:2+:n4-x'5+“°-
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1 x x? P
tTreTestsatas

1 x a2 s
Bietsatsetis”t

T x2 ¢l pd
St mtratimt o
10, x-—-a:z\/§+x3‘\/f;‘~—x4\/i+---. '“:'\t\

0,z b 20+ 32 + 42t e
12. 1 4 5z 4 2622 4+ 12523 + - - -,
x—1 (x—=12% {(z—1)°

131+
s+ 1 *7%

&
Ny

14, ( +2)+($+2)3+($:2)3+@_§1§:+...-

1 z z? x? Y
R e T
R IR AL T TRUSFRRT Y
—1, Ge—1" J‘Ez’ﬂf-l)s
-ISH' 9 "* 27
1, $+2!$2+3!:v3+4\1x*+
— 3
8.1+ @—a) 3’ s +($ “)+ -
t,:_ — g}
19, 147 “a:"‘” “)+(37,§*)—+--..
\l
(:c—a)z (x—a)s (x~—a)‘
20, _gq_ Loz o
\‘t~ 3- 4 _5-6 78 g,
4I+— 2+F§$3+9.10 +



CHAPTER XXI

Finite Differences

N

oA
180. Differences. O
The subject of finite differences deals with the: «shanges
in a function caused by finite changes in thn\mdependent
variable.
Let f be a function of an mdepende{lt vanable which
Increases by regular steps: \\

a:,a:—l—h,a;+2h',x+3,h,,:-~{.,x-}-mh,o--

We indicate the dlﬁerences between successwe values of
the function by the following notation:

P

| Af(rp)\é’j‘(x + By — £(2),
M@ +&) = f@ -+ 2h) — f(® + B,
) = f +3h) — I +20)

,Q,{(a; + mh) = [:c + (m + l)h] f(a: + mh),

\The symbol Af(z) is read “ delta of f of .- Note that
A is not a number, but is a symbol for the operatlon of
subtracting, or differencing; thus, Af(z) does nof mean
A times fixz).”

The above A’s are called first differences of the function
/. 'We may similarly form the differences of the A’s, which
are called the second differences, or differences of order
two, of the function f. The notation is as follows:
350
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Alaf(z)] = Alf(s + k) — flz)]
= f(z -+ 2h) — fl + h) = [f@z + &) = J(2)]
= f(z +2h) — (@ + 1) + f2).

2% ()

The symbol A%f(x) may be read * delta second of f of z.”
Similarly,

A 4+ h) = flz + 3h) — (o -+ 20) + @ + 1), (D

2z + 28) = f(z + 4h) — 2f (x + 3h) + filx +’21h~},

. LV

The differences of these second differences’ are called
third differences, A3f(z), and so on. AN

The successive differences of a fungiion may be con-
veniently arranged in a table such™ae’ the acecompanying
one. Note that the difference betiyeen two values is placed
in the next column and on a Jine between the two values.
(Sometimes the differences.@bf(z) are placed on the same
line as f(z), the differendgs of f(x + b} on the same line as
f@ + h), and so on{but the arrangement given in the
accompanying talylé&s to be preferred.)

4 :\ g . 5 d Thifd
Funct:on\'\ " 4 iﬁl;‘:-resx{:c es ﬁ&— differences
A |, @) |
76+ 1) s AY(z)
O° Af(a + 1) LY
N 1 + 21 fta + ) 5
f(z + 3h) Az + 2k)
Af(z + 3R)
Flz + 4k) IJ

! i 1] make the process of differencing
A numerical example wil P e e

clearer. ' For simplicity we take o =

QY
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z + mh = m. Suppose that our funetion is f(z + mh)
= f(m) = m*. We form the table of differences as shown.

TABLE oF DIFFERENCES OF 73

m | fim} ] a A% | A%
0 0
1 O\

1 1 6 PR\

7 6 «\
2 8 12 !

19 6 ]
3 27 18 A"

37 NW
4 84 24 \

61 .x;\\'
5 | 125 N

Note that all the third difiérénces which we have found
are constant. It can be preved that all third differences of
this function are constagt, and that consequently the fourth
{and all hlgher-order)\ differences are zero. It can be
proved in general Eh\&t for an tntegral rational function (thal
18, a polynomial) ‘of degree n, the nth differences are constant,
and conversely ‘that if all the nth d@ﬁerences are constant, the
functwn 181 mpolynomwl of degree n.*

181 Flndmg any term of a numerical series.

“One use of differences is that of finding the terms of &
\SBI‘ICS of numbers when the law of formation of the series
is not given, but when it is known that the differences of
a certain order are constant. To derive an appropriate
formuia for this use we must work backwards from the
differences to the function. Thus, recalling how the varl-
ous differences were obtained, we see that

* See Hall and Knight's algebras,
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[+ h) =7 + 4@,
fle 4 2h) = flz+ k) +Af@+R)
= [f(x) + &f(@)] + [&f (=} + 8T )] -
= f(z) + 24f(x) + &% (2),
fr + 3h) = flz 4 20) + Affe + 2h)
= [f(z) + 28f(x) + & ()]

+ [af(x + B) + &% (z + A)] '
= [f(x) -+ 28f(x) + A% ()] + [4f(z) + A (@) O,
+ (A% (2) + A3f @1 -

= f(z) + 3Af(x) + 38%(x) + &7 o

_ The coefficients are those of the binomial foréaiuia, and
1t ean be proved by mathematical induction-hat, for posi-
tive integral values of m, whatever the i\lmc ion f{x),

f(x + mh) = f(x) + mAf(x) +gw;_1;2-_11 A% (x)

i 20 + o+ AT O

+

o
If m is not a positive integer, (1) becornes

mun — 1) 0
5 a2 () 4o n @)

Jlo+ mhy =) - maf@) +

O |
the Tlg;,h't\ \ide of which will not terminate upless f(x) is a
E?l.yﬁomial. When f(z) is & polynomial of degree 7, differ-
enlees of order n are constant, and the right side will termi-

note with the term in A%(z). In this case it ean be further
proved that (2) is valid for all rational values of 7, both

positive and negative.
oximately represented bY

Many functions can be appr -
ords they have differences of some

polynomials, or in other W
order which are nearly equal. Formula (2) can be success-
fully applied to such functions, and consequently has &

wide range of practical applicability-

Q)
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Its use in finding any term of a numerical series will now
be illustrated.

Example.
Tind {a) f(8), (b) f(), in the series whose terms are

5,3, 1,5 21 55 - A

SorutioN, Herex = G,k = 1. Form the table of di&gﬁéﬁcés.
If we can assume that all third differences are constant ‘we may

proceed as follows: N
<D
fim) | a A% A3
0 5 PN
-2 L
1 3 Oy
-2 :“:‘ 6
2 1 o) 6
o< 6
3 5 S8 12
U186 6
4 18
54|55

(a) Set m =@in (1):

£§.7-6 -
N
1-2-3 —

o3 87
. e = —2 - .
"\\\)() 5+8(-2)+ 750+
‘..\\':' =5 — 16 — )
~O | + 336 = 325

-(Also see note after solution of part (b).)

_ _ m{m — 1) m(m — 1)(m —2) .6
(k) f(m) = 5 +m(~2) + 7220 4 T

=5=-2m-+mlm — 1)(m — 2) = m® — 3m:+ 5.

It can readily be verified that the values of f() listed in the



{182} INTERPOLATION 355

second column of the table can be obtained by substituting the
appropriate values of m in the expression m® — 3m? + 5.

Note that the value of £{8) ean be obtained without the direct
use of formula (1) by building up the table of differences. Thus,
18 + 6 = 24, which is placed below 18 in the A® column. Next,
34 -} 24 = 58, placed below 34 in the A column; 55 + 58 = 113,
placed below 55 in the f{m} column.

7'\
D m fm) | a Af A8 \
18 +40)
34 6 |\
5 55 24 g
58 6\\
7] 113 30 \’
88 N
7 | 201 36
124 [ -
8 | 325

Starting at the right aga@;, we get 24 + 6 = 30 (placed below

24 in the A2 column), and ko on, . .
The process can be\igntinued until f(8) = 32518 obtained.

P “]

73
182, Interpolation. f
One?éhremely important applica_t_;ion of f?n:‘:il]lllabe(?l)l u(;.
thepreceding section is in interpolation. This

\\ . le.
drated by a numerical examp d Tog 1.325 from a table of

Suppose that we wish to fin

lﬂgarilflms given for numbers at intervals of one-ten.th.
We find log 1.3, log 1.4, etc., and form the acc_:ompam;ii
table of differences. In the differences, decmal_ po ne
are omitted (e..g., the difference tal?ulated as 32%; f
ally 0.0322). Note that the third djﬂerencesd?? el e
Practically equal. In such a case further aifter

useless.
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m | x+ mh| log(x + mh) A a2 A%
0 1.3 0.1139
322
1 1.4 0.1461 —22
300 2
2 1.5 0.1761 20
280 3 .
3 1.6 0.2041 17 N
263 3 M
4 1.7 0.2304 —14 R
249 O
5 1.8 0.2553 PN

In this illustration, z = 1.3, A = 0.1, ani’ig\tI}e value of m
which will make x -~ mh equal to 1.325\15 0.25. Substitut-
ing these values in (2) of section 18{,}}&1’3 find

log 1.325 = 0.1139 + 0.25 X 0.0322

0.25(—0.75) 025(—0.75)(—1.75)

T L (—0.0022) s % 0.0002
TR )+ 1-2-3

= 0.1139 + 0.00805- 0.00020625 + 0.000011 = 0.1222.

2\Y
Note that the tl\lil ’involving the third difference has no
effect on the feurth place of the final result. )
The progéss of interpolation given in Chapter XIV 18
equivalent'6 using only the first two terms of formula (2)
of set%@}nf'lSl.
"™\

183: Summation of seties.

N\ :

\™ '8till another use of finite differences is in summing numer-
ical series. Let F be a function whose difference is f; that
is,

Flz + k) — Flz) = f(z),
Flz+2h) — F(z +h) =flz + h),
Flz + 3h) ~ F(z + 2h) = f(z -+ 2h),

Fla4mh) —Fla+m — 1k =fz+m—1h):
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Adding the foregoing equations, we get

Flx+mhy — F() =f(@) +fle +8) +
+f@+m-~18). (1)

If use is made of the relations AF(z) = f(z), A°F(z)
= Af(z), etc., formula (1) of section 181 may be wrlttem

in the form . O
Pl + mh) = F(x) + mf() + 22— oy ) ©
+ mm — 1Y(m — 2)

3 e e AR . 2
1.2.3 Af(")""’,\:'!:\ ¥ @)

Hence, from (1) and (2), we gejzj::';

al
L

Hx) 4+ fle 4+ h) 4+ - _|_f‘(;:+m —1h)

~1)(m -2
= nf(a) + 22 Af()+ 1.123% LR
oo Am—ligx). @

x\
Exan'g\p\el

Fid an expression for the sum of the first m terms of the series

{';h!)se terms are

5, 3, 1, 5, 21) 55!-' t
. - S sum
SoLurion. z = 0,k =1; f(0) = 5,f(1) =38, The
of the first m terms is

1(0) £ f(1) - +fon— 1
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which by formula (3) above is

Jm) | aftm) | A%(m) | a%(m)
0 5
: -2
1 3 0
-2 ]
2 1 6 \
4 [ A\ ¢
3 5 12 R\
16 6 [\
4 21 18 (N:‘
34 2 \ 1
5 55 A\
'm( N
mf(0) + ———— Af Q&)‘+
_ m(m — 1) f 1)(m—2)(m—3)_6
= m 5+ 1-2 ( 2)“"0{:{“" 1.2.3.4:
(m3 — 6m? + Tm + {3).
m\
This ean rea,dﬂy\b\e checked for a particular value of m. For
example, ) .: )
<&

\F(S)—-—(27~54+21+18)—9

{

The'sihn of the first 3 terms of the series is F+34+1=14

AV EXERCISES XXI. A

Difference the series whose terms are:
. 2,5, 10, 17, 26, - -
. 3,9, 13,15, 15, - «
. 1, 4, 15, 40, 85, 156, - - -
~54, —42, —10, 38, 05, 151, 193, - - -.
. —10, —12, —6, 38, 174, 480, 1058, - - -.

[ O e
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10,

i1,

12,
13,

14,

16,
17,
18,

(NUl tan | 0.83910 | 0.86929
D | ten |

, Find the sum of 10 te

. Find the 8th term and a formula for the mth term of the series

in excreisc 1.

 Find the 12th term and a formula for the mth term of the

series in exercise 2.

Nors. The mth term is not f(m) in the notation of
section 181,

. Find the 10th erm and a formula for the mth term of th:s\..}

serieg in exercise 3.

. Find the 9th term and a formula for the mith term of tb@‘senes

in exercise 4. D
Find the 10th term and & formula for the 'mth“tg\m_n of the
sories in excreise B, \

Given logi 1.5 = 01761, logo 16 ;@2041, logn 1.7
= 02304, logy 1.8 = 02553, 10g3n"}9 = 0.2788. Find
logy 1.536. ' X 1“"
Given log, 1.2 = 0.1823, log,,'l..aﬁj—-'n{_]'.%Z
Find log, 1.284. XN
Given ¢ = 2.7183, 6! = 3.
Mt = 40552, Tind 0™
Using the &ccompﬁ“r@ing table,
tangent of ea,ch\;}fhe following angles:
(b) 40° 45 36/% Ye) 40° 107 48",

4, log, 1.4 = 0.3365.
p043, o+ = 3.3201, ¢+ = 3.6693,

find sine, cosine, and
(a) 40°19" 12",

PN
.’\\ a
PR 4 10° 21° 49° 43
'\,,‘;\. 06 m (. 68200
R .H56 . .
win 0.64279 | 0.68 o 74314 0. 73135

S cos | 0.76604 | 0.75471

0.00040 | 0.93262

rms and a;. formula for the sum of 7

terms of the series in exercises 1-5.

Find expressions for
12 4 28 4 32 - - pe R
13+23+33+...+m8.
144240+ 3+ mh
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Find expressions for the sum of m terms of the series:
19. 12432452472 - ...
20, 3434554341,
Find the sum of m fterms of the scries whose nth term is

21, %® — 21® + 3n. 22, n* — 3n + 2.
23, 2n® — 3nt 4+ 4n — 5. 24, nt — 3nd — 2nt — 4n.

<
N
Ke
N
\\*
N
N
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No.| Square} Cube oot | zoot No. | Square] Cube ot | oot
1 1 T 000 | 1000 | 61| 2 601 132 51| 7.141)3.708
2 4 gl1414 | 1260 | 52 | 2 704| 140 608| 7.211;3.783
3 g o7 17321442} 53 | 2 09| 148 877| 7.280 |3.766
4 18 64|200011.587 54| 2016 157 464 7.34813.780
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18 361 6 850 | 4.350 | 2.663 | _69 | 4 FOM 328 s 4‘121
20 400" | E 000 | 4472 | 2714 |70 | 400D 343 000 8'3623 bl
21 431 | 0 o6L| 45663 {2769 ) 71|54l 35; g;é g'iss et
221 482 | 10 6434000 | 2802 72 87184 ggg M3 834 |37
25 529 | 12 167 | 4.706 | 2.84¢| 735 329 :
: 602 |4.198
24! 578 | 13 824|4500 | 28sed\TH | 5476 403 T .00 |adir
251 625 | 15 625(6.000 (29284775 | 5 6 421 3781 5918 296
261 676 | 17 5765099 |2062| 76| 5776 ' 254
776 |4
27 | 729 | 19 e8s|s.popf000} 77| 5929 456 833 ST (4973
28 | 734 | 21 95z|s520203.087] T8 O 474 2021 5888 | 4.201
20 | 841 | 24 389) & so72| 79| 6241 X
30 [ 900 | 27 00015477 |3.107 | B0} 6 400 :;1 ® i
ol e o) B\ TE S i) o |02
024 [ 328 : : 110 |4
33 |1 089 3@937 E745 3208 | 83| 6 858 671 787 91:: s
9, .
2 | 1100059 s0a oy | 22| 84| 79800 B 19| 9220 {4307
. g . . 274 | 4.
36 lé 16 6561 6,000 | 8302 86| 7 39 636 056 9327 o
TN . 9, .
37 4%%00 | 50 653} 6083 |3.332| 87| 7 ?22 % 2?3 9.381 | 4.448
| 38T 244 | 54 s72|6.164 (2362 ) 88 7 7s4| 031 60| oz [4.465
a0 1 521 | 50 319}6.245 3.301F 894 7 2 o et
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45 | 1 849 | 79 507| 6,567 |3.503) 93 8 o s ppst
a4 1036 | g5 184706633 [3530] 9418 ggg g‘;’? Do | o7a7 |4563
45 | 2 025 | 91 125/ 6708 |8.557{ 95 3216 887 Yo o798 4579
46 | 2 116 | 97 336 | 6.782 | 3.588 | 96 | 0040 | 4508
a7 | 2 200 | 105 823 6850 [ 3608 | 971 9409 912 (55| v.800 |40
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3

4

]

6

0086
0492
0864
1206
1523

0128
0531
(399
1239
1553

0170
0569
0934
1271
1584

0212
0607
0569
1303
1614

0253
0545
1004
1335
1644

0204
0682
1038
1367
1673

0334
0719
1072
1349
1703

1818

2355
2601
2333

1847
2122
2380
2625
2856

1875
2148
2405
2648
2878

1603
2175
2430
2672
2000

1931
2201
2455
2695
2923

1959
2227
2480
2718
2945

1087
2253
2504
2742

2067 K

3054
3263
3464
3655
3838

3075
3284
3483
3674
3856

3096
3304
3502
3692
3874

3118
3324
3522
3711
3892

3139
3345
3541
3729
3008

3160
3363

3560,
" 3766

2927

sl
(3385
| 3!) 79

3045

4014
4183
4346
4502
4654

4031
4200
4362
4518
4669

4048
4216
4378
4533
4683

4065
4232
4393

4608

4
42

4564

4713

4059
4265
4425
4579
4728

4116
4281
4440.
4554
4742

4800
4942
5079
5211
5340

4814
4955
5002
5224
5353
S

4829"

,’5100

5237
5366

V4843
*| 4983

5119
8250
5378

4857
4997
5132
5263
5391

4871
5011
5145
5276
5403

4885
5024
5159
5280
5416

5821
5033

05

5478

5599
5717
5832
5944

5490
5611
5729
5843
5955

5502
5623
5740
6855
5066

5514
5635
6752
5866
5977

5527
5647
5763
o877
5988

5539
5658
577H
H883
5099

6042
6149
6253
8355
6454

6053
6160

6263

6365
G464

6064
6170
6274
6375
6474

6075
6180

6385
6484

6035
6191
6204
6395
6403

6096
6201
6304
6405
6603

6107
6212
6314
6415
6513

-

6551
6646
6739
6830
6920

6561
6656
6749
6339
6928

6571
6665
6758

6937

6580
6675
6767
6857
6946

6590
6684
6776
6366
6953

6599
6693
6785
6875
6964

6609
6702
6794
6884
6972

7007
7093
7177
7259
7340

7016
7101
7185
7267
7348

7024
7110
7193
7275
7356

7033
7118
7202
7284
7364

7042
7126
7210
7202
7372

7050
7135
7218
7300
7380

7059
7143
7226
7308
7388

364



Tansre Il —Locaritams {Continued)

2

3

.6

7

7404
7482
7559
7634
7709

7412
7490
7566
7642
7716

7419
7497
7574
7649
7723

T427
7505
7582
7657
7731

7443
7520
7597
7672
7745

7451
7528
7604
7679
7752

7459
7536
7612

7760

7474
7351

7701
w4

7782
7833
7924
7093
8062

7789
7860
7931
8000
8069

7706

7803
7875
7945
8014
8082

7818
7889
7950
8028
8096

7825
7896

7966

8035
8102

7846
7917
7087 |

8054
5122

8129
8195
8261
8325
8388

8136
8202
8267
8331
8395

8149
8215
8280
8344
8407

8162
8228
8203
8357
8420

8169
8235
8290
8363

{ 8180
8254

8451
8513
8573
8633
83692

8457
8519
8579
8639
8698

8470
8631
8591
8651
8710

8751
8808
8865
8621
BOTG

8756
8814
3871
8627
8082

8768
8825
8882

8393

9031
0085
9138
9191
5243

9036 |

9143
9196 ¢
9248\

o047

)| 9101

9154
9206
9258

9204 [\pog
93450 9350

9395,
9404

9504

9309
9360
9410
9460
9509

0542
9590
2633
9685
o731

9562
9500
9647

9741

9557
9605
0652
2509
9745

97Tv
0823
9868
9912
9956

97386
9832
9877

9965

9701

0881
9926
9969

9518

9566
0614
9661
9708
9754

0800
9800
034

9978

9763




TapLe III—ComPoUxD AMOUNT:

(1 +rp

-]

1%

1%

2%

2:%

3%

4%

5%

8% 1 1%

-
S S0 Ok e

1.0100
1.0201
1.G303

1.0408
1.0510
1.0615

1.0721
1.0829
1.0237

10150
1.0302
1.0457

1.0614
1.0773
1.0934

1.1068
1.1265
1.1434

1.0200
1.0404
1.0612

1.0824
1.1041
1.1262

1.1487
11,1717
1.1851

1.0250
1.0508
1.0769

1.1038
1.1314
1.1597

1.1887
1.2184
1.2489

1.0300
1.0609
1.0927

1,12565
1.1593
1.1941

1.2299
1.2663
1.3048

1.0400
1.0816
1.1249

1.1669
1.2167
1.2653

1.3139
1.3686
1.4233

1.0500
1.1025
11576

1.2155
1.2763
1.3401

1.4071
1.4775
1.5513

1.0600 | 1.0700
1.1236| 1.1449
1.1919 1.2250

1.2625 | 1.3108
1,3382 | 1.4026
1.4185 | 1.5007

1.5036 | 1.8068/
1.59381 L7182
1.6805 | L8385

1.1048

1.1605

1.2190

1.2501

1.343%

1.4802

1.6280

1.7908 19672

L
-1 R

Tt bt
=T

16
17

1.1157
112R8
11381

1.1485
1.1610
1.1726

1.1843
1.1961
1.2081

1.1779
1.1056
1.2136

1.2318
1.2502
1.2690

1.2880
1.3073
1.3270

1.2434
1.2682
1.2936

1.3105
1.3459
1.8728

1.4002
1.4252
1.456%

1.3121
1.3449
1.3785

1.4130
1.4483
1.4845

1.5216
1.5597
1.5987

1.3842
1.4258
1.4685

1.5126
1.5580
1.6047

1.8528
1.7024
1.7535

1.6385
16010
1.6651

1.7317
1.8009
1.8730

1.047
2.02,5&
2. 1068

1.7103
1.7959
1.8856

ZN1820

&¥2920
/2.4066
2.6270

1.9799]
2.0789

1.8083Y 2.104%
2.01294 2.2522
201329 | 2.4098

2.2609 | 2.57
2.3066 | 2.7650
2.5404 | 2.9522

2.6028 | 3.15688
2.8543 | 3.3799
3.0256 | 3.8165

N

1.2202

1.3469

1.4859

1.63568

1.8061

F1511

2.65633

3.2071 | 3.8607

27
28

1,2324
1.2447
1.2572

1.2697
1.2824
1.2953

1.3082
1.3213
1.3345

1.3671
1.3878
1.4084

1.4205
1.4509
1.4727

1.4948
1.5172
1.6400

1.51H7
1.5460
1.5769

1.6084
1.6406
1.6734
1.7069

17758

1.7410.

1.6796
1.7216
1.7646

1.8087
1.8539\
1.9003

A 0478
INL.D9BS
I 2.0464

1.860%
1.9161
1.9736

910228
90058
2.1566
29213

2.2879
2.3566

¥2.3699

2Y2THE
2.4647

2.5633
2.6638
27725

2.8834
2.9987
3.1187

27860
2.6253
3.0715

3.2251
3.3861
3.5557

3.7335
3.9201
4.1161

43906 | 4.0406
3.6035 | 4.4304
38107 4.7405

4.0489 50724
4.20101 54274
4.5454 | 5.8074

4,52231 6.213%
5.1117 | 6.6488
5.4184 | 7.1143

30

1.3478

1.5631

18114

2.0476

2.4273

3.2434

4.3219

%7455 | 7.6128

31
22
33

34
35
36

37
33

1,3613
1.3749
1.3887

1.4026

1.41G6.
14308

1.5865

1.6345
1,6560

16839
17051

1.7348
1.7608
1.7872

"1.61033

"L.8476
L8845
1.9222

1.9607
1.9999
2.0399

2.0807
2.1223
2.1647

2.150Q
2.2038
2.2589

2.3153
2.3732
2.4325

2.4933
2.5557
2.6186

2.5001
2,5751
2.6623

27319
2.8139
2.8083

3.3731
3.5081
3.6484

3.7943
3.6461
4,1039

4.2681
4.4388
4.6161

4.5330
4.7649
5.0032

5.2533
5.51G0
5.7918

G.0%81 | §.1451
6.4534 | 8.7163
6.8406 | $.3253

7.25101 9.9781
7.6361 {10.6766
£.1473 |11.4239

8.6361 |12.2236
g.1543 |13.0793
9.7035 |13.9948

40

1.8140

2.2080

2.6851

4.8010

10.2857 [14.9745

41
42
43

44
45
46

47
48

‘149

50

“1.5038
1.5188
1.5340

1.5493
1.5648
1.5805

1.5063
L5122
1.6283

15412
1.5688

1.9253
1.9542
1.9535

2.0133
2.0435
2.0741

1.80469

2.2522
2.2972
2.8432

2.3001
2.4379
2.4366

2.5363
2.6871
2.6388

2.8210
2.3915

2.9638
3.037%
3.113¢%

3.1917
3.2715
3.3538

27622 | 3.

4.9931
5.3923
5.4005

0.9060
10.4013
10,9213

1.6444

2.1052

2.6916

3.4371

11.4674

0.9020 |16.0227
193870 17,1443
12,2505 18-3444

12.9855 10.6285
13,7646 21.00?5
14,5005 |22.4726

4650 |24.0457
ig.sgag 25-7533
17.3775 |27.5299

18,4500 20,4570




Tasre IV.—PrEsenT Varoe: (1 + 1)

=

1%

1%

2:%

3%

4%

5%

1%

99010
92030
97059

96053
05147
94205

93272
92348
01434

98522
97066
25632

94218
92826
91454

80103
85771
H7458

JB7581
95181
192860

90595
83385
86230

B4127
82075
80073

97087
H4260
01514
885840
£6281
BI748

81309
78941
76642

06154
92456
88900

85480
82193
79031

75992
75059
70259

90703
86384

82270
78353
a4622

LJHIGS
67084
64461

852381 .

90529

86167

78120

74409

67550

61391

632
BR745
L7566

86996
86135
85282

84438
33602
B27T4

84893
B3639
82403

BI1185
.TO985
78303

77639
76491
75361

76214
74356
72542

72242
70138
.85095

656112
64186
62517

.84958
52460
80057

57748
55520
83391

51337
49363
AT464

.58468
55684
53082
50607

48102
AG811

39573

] NT'—'I—'#—‘ i e Bt
g mﬁmlo LoDy CooMda QIbD R °1=Dm"\l e GO LD

[=3
-2

81954

74247

81143
80340
79544

T8757
37977
77205

78440
75684
74934

73160
72069
T1004

.69954
68921
67902

.66899
H5910
654938

45689

AZBBI

42196
0573

-37689

34185
32667

31007

A3630 1 .
M552 .

36804 |

74192

63976

73458
72730
72010

71297
0591
69892

63200
35615
L7837

63031
62008
61182

60277
GHE87
w8509

57644
56702
55953

B7165

55126

54312
53509
52718

51939
51171
50415

49670
.48936
A8213

27237
26444
25674

47500




TanLp V.~AMOUNT OF AN ANnurty: [(1 4 7)* ~ 1)fr

1% | 13% ) 2% |23% | 3% | 4% | 8% | %%

1.0000| 1.0000| 1.0000; 1.0000{ 1.0000[ 1.0000; 1.0000] 1.0000
20t00| 2.0150| 2.0200] 2.0250{ 2.0300; 2.0400[ 2.0500| 2.0600
30301} 3.0452| 3.0604] 3.0756] 3.0000] 3.1216| 3.1525 3.1836

4.0604] 4.00000 4.1216] 4.1625] 4.1836] 4.2465| 4.3101| 4.3746
5.1010| 5.1523| 5.2040| 5.2563! 5.3091| 6.4163| b£.5258| 5.6371
8.1520| 6.2206| 8.3081| 6.3877| 6.4684| 6.6330| €.8019| 6.9753

7.2135] 7.3230{ 7.4343] 7.5474| 7.8625| 7.3083] 81420} B8.3938
22857 8.4328] 8.5830] 8.7361} 8.8623| 9.2142] 9.54011 90.8073
o.5685| 9.5503| 0.7546] 9.9545| 10.1591| 10.5828] 11.0286| 11.4913

{04623,10.70%7,10.0407| 112034 11.4638| 12.0061| 12.6775( 13.1808

11/i7.5668/11.8633|12.1687|12.4835 12.8078{ 13.4864( 14.2088| 14.97 LG5
12|12 6z2513.0412/13.4121[13.7956] 14.1920{ 15.0238| 150171 16.8839
13|13.8003{14.2368114.6802]15.1404] 15.6178| 16.6268; 17.7130 18:8‘32\1‘

1al14.0474l15.4504115.9730]16.5100| 17.0863] 18.2010] 10.5088) 210151
15116.0069|16.6821|17.2834/17.9219] 13.5989 20.0236| 21.5736]{23.2760
18|17 25701179324 18.6303} 10.3802] 20.1569] 21.8245| 23.65%5} 25.6725

17118.4304]19.2014[20.0121[20.8647) 21.7616] 23.6075 258404 28.2129
18[19.6147[20.4504(21.4123{22.3563; 23.4144| 25.6454 »1324] 50.9057
19{20.8100{21.7067|22.8406123.9460( 25.1169 27.67121\30.6390 33.7600

80|22.01 0|23.1237(24.2974|25.5447] 26.8704 25,7781} 33.06560| 36.7856

51|33.9392(24.470625.7833|37. 1834 28.6765] 31,4692] 256.7193 39.8027
29|24.4716/25.8376127.2900{28.8629 30.5368] 342480 38.5052 43.3923
23025, 7163]27.2251|28.8450(30.5844| 32.4528| 36.6179| 41.4305 46,9958

24|26.9735/28.6335(30.4210(32.3400] 34.4985| 30.0826] 44.5020] 50.8156
a5|28.2432(30.0630[32.0303|34. 1578 964593} 41.8450| 47.7271| 54.8645
26|20.5056l31.512033.6700(36.01 170 88.5530( 44.3117| 51.1135] 59.1564

27(30.8200/32.9867(35.3443|37.8120! 40.7006| 47.0842) 54.6601 63.7058
o8132.1201]34.4815{37.0512]39,8508| 42.9309) 49.9676| 58.4020 69.5281
2033.4504/35.0087|38.7022(41.8563| 45.2180| 52.0663) 62.3227 73.6388

30,34.784037.5387(40.5681 13.0027| 47.5754| 56.0849 66.4388| 79.0582

|31136.3527|30.101243.3704|16.0003| 50.0027| 59,3283| 70.7608 84.80171102.07301
32(37.4041(40.6883144, 2070148.1503] 52.5028| 62.7015] 75.2988 60.8598(110.2182
33(38.8690]42.2086 46,11 16150.3540] 55.0778| 66.2095} 80.0638} 97.3432 118.9334

34]40.2577 43»%33! 48.0338152.6129| 57.7302( 60.8579| 85.0670 104.1838 128‘2583
3541 6603[45.5921149.9045)54.9282| 60.4621( 73.6522 00,3203]111.4348 138‘2335
36143.0760147.2760{51.0944(57.3014] 83.2753| 77.5983] 95.8363 119.1209/148.91

37144%075148.9851|54.0343(50.7330| 86.1742| 81.7022]101.6281|127.2681 150.3371%
32l44,0527/50.7100]56.1149(62.2273| 69.1684] 85.9703(107.7095 1359042 172.5603
30]47.4128/52.480758.2372/64.7830| 72.2342 00,4001 114.09501145.0585|185.6403
40|43.8964154.2679/60.4020/67.4026|_75,4013| 95,0205 150.799%154.7620,109.6351
T¥(50 3752 |55.0810152.6 100(70.0876, 78.6633| V9.5265|127.6498|163.0477 214.60331
30|51 8700157.0031 |64 8622|72.6398| 82.0232|104.8196{135.2318[175.0505 230-63 1A
43|53.3078(50.702067.1595(75.6608] 85.4839|110.0124/142.9933/187.5076 247.7

14154 9318(61.6889(69.5027;78.5523 80.0484]115.41201151.1430 199.7580
45/56.4811/63.6142(71,8927|81.5161] 92.7109121.0294|150.7002 212.7435
46/58.045565.5684|74.330684.5540| 96.5015/126.8706]168.6852 226.5081

47|50.6263/67.5510]76.8172|87.6679|100.3065)132.9454(178.1104 241.0986
18[61.2226(60.565279,35356/00_8596{104.4084|139.2632(188.0254] 256.5640
lﬂ £2.8348(71,6087|81.0406(94,1311|108.5406{145.8337|108.4267 272.9584
5D

Lie o9
61.4630|73.0828 84,5794|07 4843/ 1 12.7960|152.6671|209.3480 200.3359
368

ISlemeay oous totsr




Tapin VI.—PrEseNT VALUE OF AN ANNUITY: f-(Q1 '-F‘rf*']lr__

1% | 1% | 2% | 24% | 3% 4% | 5% | 8% | 1%

o001} 9852 9804 o756} .9700] 9615 o524] 0434 0346
1o704 | 16550 1.9416] 1.9274 10135} 18381} 18504 1.8334 | 1.8080
2.0410| 29122 2.8839 | 2.8560 2.8986 | 27751 2.7232 2,6730| 2.6243

2.0000 | 3.5544 | 3.8077] 8.7620 57171 | 3.6209 3.5400| 3.4651| 3.3872
X 47828 | 4.7135| 4.6458 2.5707 | 4.4518 | 4.3205 4.2124 | 4.1002
5.7055 | 5.6972 | 5.6014| 6.5081 54172 | 5.2421 E.0767| 1.9173| 47665

o282 6.5082] a.a720] 6.3404] 6.2303 | 6.0031) 57862 5.5524 | 6.3893
81282 O ees | 7.9255 7.1701 | 7.0107 | 6:7337) 04682 6.2008 | 5.9713
10517 | 74552 | 471625 | 7.0700| 77861} 7.4353} 7.1078  6.8017 6.5152
775 5 0053 | 89836 | 87531 | 85302 | 81109 T.721T 73601 | 7.02304 |

11103676 110.0711 | 6.7868 | 0.5142 D.2526 | 8.7605 8.3064 | 7. .
121112551 [10.9075 }10.5753 {10.2578 0.0540| ©.3851 2.4633| 8.8338 7.942N
13(12.1337 [11.7315 |11.3484 |10.0832 10,6350 9.9836 _9.3933 88527} 8351

14 [15.0037 12,5434 [12.1062 111.6809 11.2081 [10.5631 0,8030. 9.295Q (87465
15113.8651 [13.3432 [12.8493 12,3814 11.0379 [11.1184 10.3797] 9.7122 \0.1079
16114.7170 14,1313 |18.5777 {13.0550 12,5611 §11.6523 10.8378 19.(959 9.4468

17115.5623 [14.0076 |14.2019 [13.7122 [13.1681 12.1657 |11.2741 1004773 | 9.7632
181163083 |15.6726 |14.0020 {14.3534 13.75635 12,6593 |11.6896{10.8276
18175360 |16.4262 |15.6785 |14.9780 [14.3238 13.1330 [12,0853711.1681 10,3356
30 |18.0456 | 17,1680, [16.3514 15602 |14.8775 | 13.6903, Aﬁzg E_.g_g%g 1_3-_2%
18.8570 |17.6001 |17.0112 161345 154150 {14.0202,(F2.8212 (1. .
23 110.0604 |18.6208 I;.6580 16.7654 |15.0369 |144511 13.1630 12_%%6 H%
O 159500 | 152022 17,3321 |16.4436 |L4,8905 13.4886 [12.3034 | L1-
o1 454 0,030 18,9130 {17,850 [16.9368 (152470 13,7086 |12.5504 114693
25122 0232 20.7?96 19.%2%5 18.4244 17.4181 [15.6221 14.0039 1%’3%3‘2 H.gggg
36 [22.7952 21,3086 |20.1210 |18.9506 1718763 115.9828 14.3752 (157 .
. 13.2105 [11.0867

27 193.5500 [22.00 10.4640118.3270 16.2296 [14.6430

28 [24.3164 %%“.}2’;2 3?:;3?% 13.9 ol18641 116.6631 14.8981 13%33? }g;;‘;}{

20 (250608 (355761 |21 8444 [20,4535 19.1885 16.9837 1151411 ‘_3_——5 54090

30155 5077 |54 G158 (22.5069(30.9305 10,6004 17.3920 | 153723 __——13'73;1 e

i e e ow o AR SRR
SE9R |95, 267 1 [23,4683 [21.8492 |24, E " :

33 127.9897 [26.8790 33.9333 37,9010 (20,7658 18,1476 |16.0025 14.2302 |12.7538

34 |28 7027 |26.4837 |94.4086 (22.7238 [21. 1318 184112 161022 43631 170507
35 [29.4086 127 24,0086 [23.1452 {21.4872 18,6646 [18.8742 |14.
36 (30.1075, %5,‘5%3‘;’ 240080 53,5563 [21.8323 |18 9083 165460 (146210 13.0362
37 130.7998 ?8 9371 |25.0695 [23.9573 29,1672 [19.1428 167113 1&.'8722% }g-{%;g
33 314847 28,8051 [26.4406 124.3486 50,4025 10,3679 }g.g?;g L4 152049
30 1321650 [29.3646 26:9026 [24.7303 528082 195848 |1 Lo |ooores |75 3317
10 555347 (309168 (27,0565 (20.1028 g5.1148 | 197928 | LTS0Sy 173 5041
{4007 1304590 |27 7348 254001 120 S01a 199001 |17 422 [15.2248 13,4528
45 (34 8100 ey 282316 (26,1664 |23.9819 20.8708 17.5459 15.:(;:: 135579
e e
2 : - N -
16 |36.7272 S \30.a023 |27.1542 |26.7754 28847 17,8301 115.5244

47 |37.3527 |33.5552 [30.2966 [27.4678 175 195 8500
27 |33.55 4675 125.0847 [a1.1061 18077 |12 9676 [va 7608

-
oo~y oonds CORS -
-
oo
=1}
[Z+]
r

a3 13779740 [34 0426 [20.6731 |2
40 |33 ERE1 [34.6247 1310621 25,0714

50 (30,1961 |34.9097 |31.4230 55 3623




Tapre VII.—AmEnrcan ExperiENce TasrLE or MorrarniTy

KA

370

Number | Number Number [Number Number | Number
Age living | dying Age living | dying Age living | dyicg
10 | 100,000 | 749 | 40 { 78,106 765 | 70 | 38,569 | 2,301
11 | 99250 746 | 41 | 77,341 7724 | 71| 36,178 | 2,448
12 | 98,505 743 | 42 | 76,567 785 | 72 | 33,730 | 2,487
13 | 97,762 | 740 | 43 | 75,782 797 | 73 | 31,243 | 2,505
14 | 97,022 | 737 | 44 | 74,98 812 | 74 | 28,738 | 2,501
15 | 96,285 | 735 45 | 74,173 828 | 75 | 26,237 | 2,476
15 | 95550 732 46 | 73,345 848 | 76 { 23,761 | 2431
17 | 94818 720 a7 | 72,997 g/0 | 77 { 21,330 2,369
18 | 04,080t 727 48 | 71,627 go6 | 78| 15,951 .22
19 | 93,362} 725 49 { 70,731 927 |79 | 16,670\ 2,1%
20 | 92,6371 723 | 50 | 69,804 062 | 80 | @447 | 2,001
21 | o914 722 | 51 | 68242 | 1,001 | 8hJ\12,383 § 1,664
22 | 01,192] 721 52 | 67,841 | 1,044 | ®AJM10,419 | 1,816
23 | 90470{ 720 | 53 | 66,797 [ 1,001 | B3| 8,602 | 1,648
21 | go751| 719 | 54 | 65706 | L1a3pea | 6,955 | 1470
25 | 89,032 718 55 | 64,563 %;193 85| 5,485 | 1,202
26 | 88,314 TI8 56 | 63,364 {0260 |86 | 4,193 | 1,114
27 | 87,596 | T7I8 57 | 62,0044 1,325 | 87 | 3,070 933
28 | 8,878 | 718 | 58 | 6o, 779N} 1,304 | 88| 2,146 744
20 | 86,060} 719 | 59 | 5988 | 1,468 | 89| 1,402 555
30 | 85,441] 720 60 7,017 | 1,546 | 90 847 385
81§ 84721 | T 61 56,371 | 1,628 | 91 462 246
32 | s4,000| . 723 |62 54,743 | 1,713 [ 92 216 137
33 | 83277 726 .63 | 53,030 | 1,800 {93 79 58
34 | 82,551 720 64 { 51,280 | 1,889 | 94 21 18
35 | sigo2| 732 | 65 | 49,341 | 1,080 | 95 3 3
36 | 81000787 66 | 47,361 | 2,070
37 | 80,3530 > 742 1 67 | 45,201 | 2,158
38 79,5‘1{1 749 | 68 | 43,133 | 2,243
39 | 78862 | 756 | 69 | 40,890 | 2,321




TABLE VIII.—TRJGONO]&ETRIC Fonerions

|angle sin | tan | cot | cos angle! sin | tan | cot | co8

5700 |.0000|.0000| —  |1.0000{90° 0| | 9° 00].1564.1584,0,8138).9877 81° 00’
10 [.0020|.0029:343.77/1.0000 50 10 [.1503].1614{6.1970|.9872( 50
20 | 0058[.0055:171.89(1.0000) 40 20 |1620).164416,0844(.0868 40
30 |.0057,.0087|114.5911.0000) 80 30 1.1650].1672(5.9768(.0863) 80
40 {.0116,.0116/35.940 9999 20 40 |.1679].1708(5.8708].98581 20
50 |.0145[.0145(68,750] .9908{ 10 50 1.1708|.1733|5.7694:.9853 . 10

1o 00'].0175(.017557.200| 9098]897 00’| [10° 00.1736(.17635.6713 L0R43[30° 00
10 |.0204|.0204|49.104| .9998] 50 10 |.1765|.1708(5.5764|.9843| B0
20 i.0233| 0235(42.964 9997 40 20 [[17941.1823!5 4345].9838) 40
30 | .0262].0262(38.188| .woe7 30 20 1.1822].18536.2955].9833| 30
I 0a81l 0501(34.808, 0008 20| | - 40[185%|.18835.3093 os27] 20N
60 |.0320! O320[31.242] 9905 10 50 [18801.1014{5.2257).9822) 1O

90 00].0340].0329125.636| .000488° 00| |11° 00/|-1908). 1944 5,1446(.9816/78° 00
10 |.0378|.0378|26.432| (9093 80 10 |.1937|.1974}5.06581.08114 . 80
20 1.0407|.0407|24.642| 0982 40 50 |.1065].2004i4.9804{ 08051 40
301.04561,0437(22.004) 92001 30 50 |:1004] 2035}a.01500709| © 30
40 |.0465!.0460[21.470| .oosg{ 20 0 |.2022] 2065la.84aD1 0708 20
50 |.0494|.0495{20.206, (9988 10 50 |.2051).2006i4577291.9787| 10

2 00|.0528( 0524/19.081] 0086|870 00| {12° 0071.2079 .21§g 47046 .973;7;‘1’131
10 |.0a52}.0553|18.075 0985 B0 10 |-2108).2156{4.6382.97 5
201.0581].0582|17.169| .9983| 40 201,213 -21\!64-5736 o760 40
30 |.0610{.0612/16,350| 0981 50 30 [2184{2217s.5107| 8763 30
30 [0640/.0641115.605) 9080l 20| | - 40 hglgd -2247|4.44941.9757
60 [.06oul.067014.924) 078 10 50,2293 22784.3897|.9750

e 00| 0605|0600l 14301 _gorelse® v |10l [:2250,:2809:4. 3313 7447700
10 p727| 0720118727 0074 501 102276 233014.2747|.9787
o0 67560754 15.107) 9071 40" 20 -2308 -23704-2123-
B O 5706 oo6al  sMhi  30[.2334.240 11653
40 :.0814].0816 12,251 0957 2 40 {-2868 2432 4.[)611 .
50 0543|.0846|11.826] 9964 \10 50 |.2391/.2462/4.0611 .
5 00’ 0372|0875l 114301 oonales 00| [14° 0072415 .2493/4.0108),
. 9902 2 | 10 [ 24a7|-2524/3.9617 .

-+ 10|.00011.0004)11.050/ 8050 50 10 | Sasis.0136

20 |.0929].0934/10.712( 9957 40

B O oags, wops| 0| | 302504230 Fy e
40 [.00%7|.009210:078] 0951 20 40 .2530 .gma-wso 4
50 |.1016.1022)0.9882| 9048 10 50 (2560 .

6 00°| 10451, 1051i9 5144 004584700 [16° 002538 267913.
10 L.1072}reRolo.2553| 0942 30 10.2616; .2’;‘% g.gi%- ¥
20 1110313410 .0098( 9939 40 20 | 2644127423, 6470
30 [.1452['11898.7760; 9036 30 30 T O5(3.6036]-
40 ,1161.1169(8.5556] 5032 40 05| 28363.6261).

50401901198 =.5450| .9029 10 s
760" “sg2s/8g° ov| [16° o0'].2766].2807,3.4875
o | 1ats/ 1567179530 o ED 10 |.2754/.2809(3.4495).

)10 |.1248] 1257|7.0530| 9922 &0

20 [ 1276|.1287|7.7704] 9018 40 20 .2% gggé %‘é}ﬁ%
56 [ 1308].1317|7.5058 0914 80 30 {2840, 2060 31551
a0 | 1334]1546(7.42871 .9o1| 20 4012801 5q26,3.3052|.
501383 1a7¢|7.2687] o007 10[} 80p A o

& 00'| 1302] 140571154} 9903/82° 00| HT° 00 .232; Bsggg Al
I rasale o6sa| asve a0 [ 30\23555a1l3 a0e1( 0
20 || 1440|.1465/6.5260| 0894 40 20 |'3007|-3153(3. 17161
30 {1475l.1495/6.6012| 9880 39 30 13008 5185/3.18071.9628
%0 [1507].1524/6.5606] .0888) 20 30 | -3062|-3217|3. 1084,
50 [ 1536/ .1554|6.4348| .9881) 10 B0 |99 sala.0777

9° 00| 1564|.1584]6.3138| 987%E -
cos | cot | tan | siD angle cos | cot




TapE VIIL — TrigoNoMETRIC FuncrioNs (Condinued)

angle | sin | tan | cot | cos angle ! sin | tan | cot |cos
18" 007 3000!.3240(3.0777].9511]72° 00| [27" 00'|.4540).5005 1.0626/.8310,63° 00"
10 §.3118[.3281(3.0475(.9502] 50 10 |.4566(.5132|1.9436) .8807] 50 |
20 |.3145/.3314/3.0178(.9492] 40 20} .4502.5169(1.9347].8884) 40
30 [.3173|.3346(2,98871.0483] 30 30 |.4617).5206(1.9210,.8570| 30
40|:3201(.3378(2.9600}.9474] 20 10 |.4643|.5243(1.0074 88571 20
501.3228|.5411/|2.9319).0465] 10 50 |.4660).52580(1.8040/.5845 10
19° 007 .3256].3443(2.0042].0455|71° 00| |28° 00°].46051.5317,1.8807|.5824)62° 00"
10 [.3283|.9476]2.8770(.9446 B0 10 | 4720[.5354 1 867T6.5816) 50
20 [.33111.23508(2.8502|.9436| 40 20 |.4746.5362(1.8546 8802 40
30 |.3338|.3541|2.8239(.9426| 30 30 E4772|.5430(1.8118, 8748 40
40 |.3365/.3574[2.7080.9417, 20 40 1477|5467 (1.8201 8774, 20
50 |.3393|.2607|2.7725].0407) 10 50 |.4528!.5505(1.5165.5760L { WO
20° 00'].3420|.2640(2.7475].9207|70° 00'| 29° 00| 4845].5543,1.8040) 8746/61700"
10 |.3448|.367312.7228(.9387|" 50 10 | 4874].55%1|1.7917/€732| 50
20 |.3475(.3706(2.6985(.9377| 40 20+ AR00|.5610[1.7T7O0NT1S] 40
30 |.35021.8730(2.6746,.9367] 20 36 172624| 5638|1.7675.5704 30
a0 |.3520).3772(2.6511].0358] 20 40 |.4950..5696( k7876|8688 20
50 |.3557].3805(2.6270(.9346| 10 50 |.4075.573509437|.8675) 10
21° 00'].3584/,333912.6051|.9336/69° 007{ [30° 00/|.5000|. 5T, 7321|8660 §0° 00/
10 |.3611}.3872]2.55261.9325) 50 10 {.5025h5812|1.7205 &a46| 60
20 |.26381.3606(2.5605(.0815) 40 50 | 50800M5S51|1.70901.8631) 40
30 |.3665).3030(2.5386(.9304) 30 20 | 5076.5800|1.6077.8616] 30
4D 1.5692|.8073[2.5172(.0295| 20 aoR100 5950:1.6364].8601| 20
50 |.3719|.4006(2,4960,9283] 10 5O\F125/.506011.6753] 8587 10
223° 0(|.3746/.4040(2.4751|.0272(68° 00 31° obl.5150].6000|1.6643].8572(58° 00°
10 [.5773].4074|2,4545(.0261} 50 Y10 | 5175].004801.6534|.8557| 50
20 |.3800(,4108(2.4342(.9250] 40 30 | n200].608811.6426|.5542 40
30 |.3827|.4142)2.4142].9239| 30 30 L5225 .6125(1.0310(.8526) 30
40 | .3854/.4176(2.3945(.0228| 20 10 |.5250].616%|1.62121.8511] 20
50 |.2881.4210[2.3750(.9216(_ 10 50 | 5275..6208|1.6107:.8456] 10
23° 00’|.3807|.4245/2.35501.9205)67° 00'[ [32° 00v|.5200(.62401.6003 8480/38° 00
10 |.30341,4270(2.3369,.9194" 50 10 | .5224|.6280!1.5000.8465] 50
20 |'3061].4314[2.3183h0182 40 of | Brag|.6330|1 5705 .8150] 40
30 |.3087/.434812.9098).9171 30 30 | .53731.6471|1.5607 8434 30
20 |.40141 4383|202317(.0159| 20 10 |'5308| 6412 1.55u7|.8418 20
50 |.4041 .4417 22637(.0147 10 50 | 5422|.6453|1.5497|.8403 10
24° 0040671, 4452/2.2460].013566° 00') 122° 007].5446,.6404/1.5390 838787 00
10 |.4094] .ghs:’ 2.2286(.9124]" 50 10 |.5471].6536!1.5301,.3371 53
20 .%0.4522 2.2113.9112) 40 20 | 5405(.6577,1.5204|.8350 go
30 | 4147].4557|2.19431.6100] 30 a0 [.5510[.66191.5108.8830 9
£04.4175(.4592(2.1775/.9088| 20 40 |.3544!.60611.5013|.8323 Eo
50Y.42001,462812.1609.9075) 10 50 | .5568;.670%|1.40319(.5307
_|28°00/] 4226 4663]2.1445).0063|65° 00| [34° 00'}.5502|.6745,1.4826 8200 iﬁ‘i}ﬂ’.
VY10 |.2953).4600!2.12831.0051) 5O 10 |.5616.6787|1.4733/.8274 ig
20 |.4276].4734|2.1123).0088 40 20 |.5640;.6830|1.4641|.8208 &4
a0 | 43081 4770(2.0065|-9026) 30 30 |.5064).6873(1.4550..8281) 54
40 |.4331].4806]2.0808(.0013] 20 40 |.5688(.6016|1,4460,.8225 24
50 | 4358|.4841|2.0655{.9001; 10 B0 |.5712(.6059}1.4370; 82085 (
26° 00 4384] 487712.0503 . 2088l64° 00| |a5° 007.5736].7002|1.4281|.8192 15_2%
- 10 .4410!.4913(2,0353).8075] 50 10 [.5760].7046(1.4193(.8175 io
20 |.4436/.4950(2.0204(.8662] 40 20 | 5783|.708911.4106.8155 o5
- 30 |.4462(.4586(2.0057|.5948| 30 50 .5807].7133| 1401918141 D
40 |.4488.5022(1,9912|.8036] 20 40 |-5831|7177|1.3934].81241 71y
5O |.4514|.5059]1.0768(.3023| 10 50 {.5854].7221|1.3848).8107 e
a7e 007 .4540+.5005|1.9626].8010(63° 00Y] [36° 007].5878(.7265/1.3764 ._§(_J_9_.Q f_*___‘_’_‘_’_
: i le
cos | cot | tan | sin |angle cos | cot | tan | 5P | | AE

372




Tants VIIL — TrigoNoMETRIC FoNoTioNs I(Oominued)

angle| sin | tan | cot | cos

36° 00°].5878} .7265(1.3764.5000164° 00°)

10 1.5901] .7510/1.36801.8073] &0
20 |.5925] .7355(1.3597|.8066) 40
30 {.5048| .7400(1.3514,.8039; 30
40 1,5973f .7445|1.3432| 8021 20
50 1.5005] .7400(1.33561].8004; 10

37° 00’].6018] .7536/1.8270(.7986{53° 00

1060414 .75%1]1.31501.7968 80
20,6065/ .7627|1.9111[.7951 40
30 |.6088| <7673[1.3032{.7934| 30
40 8111} .7720|1.2954.7926] 20
50 i.6134| .7766]1.2876].7898] 10

38° 00].6157| .7818}1.2709].7580/52° 007
10 l.g180 .7860[1.2728.7862 OO A
o0 | g202] 7007 1.2647[.7844 40
30 ||6225) .7954]1.2572(.7826) 30 o\
40 |B624g .a002(1.2407[.7808 20 4

5o Lez71}-.80a0]1.2423).7700) 1O RN\S

/s

39° 00'|.6208| .8008]1.2349).7771{517 G
107.6316| .8146(1.2276 7753 \&gf
20 | '6338] .8195(1.22081.7
30 |.6361 .8243|1.2131 m V30
40 1.6383| .8292|1.2060)769 20
50 [.6406, .8342|1.1988% 779, 10
|a0° 0076428 _8301|1.1918].7660|50° 00"
10 | 6450 8as1n18drirea; B0
90 [parel saol|ii77el7e23( 40
30 |'ea04| =sd1]1.1708!.7604| 30}
40 6517] ®91|1.1640,7586( 20
501 65300\ 8642|1.1571|.7066( 10
41° 00'],6861) 8693 1.1504/.7547(497 00"
10 6583|8744 1.1436/.7528] 50
33 ae0d| 8796|1.13607500] 40
\ 30 | e626! .8847|1.1303|.7400| .30
()40 | 6648| .889911.1287).7470 20
A bo|.ee70) 82952 1171|7451 10
\’..’ taa® 001.6601] .0004]1.1106).7431 48° 00’
10].6713] 9057110417412 50
N\ 320 |.6734] .9110{1.0977(.7892 40
N\ 30 ['6756] .0163(1.0913).7373 30
\ , a0 | 6777| .8217(1-0850/ 7353 20
N\ 50 |.6700| -5271{1.0786..733 10
430 004].6820] .032511.0724 .7314 47 %’
10| ega1| .0380[1.006%(.7204
20 [ 6a62] .0436[1.0599).7274 40
50 |'asd| .9a90[1.0538(.7254 30
16 1ea05| -9545]1.0477].7234 20
50 |'6026] .0601]1,0416).7214 10




Index

(Numbers refer to pages) A

Abscissa, 16.

Absolute inequalities, 127.

Absolute value, 165 footnote; of
complex number, 179,

Absolutely convergent series, 345.

Addition, associative law for, 3; com-
mutative law for, 3; of complex
numbers, 174, graphie, 177; of
fractions, 50; of radieals, 69.

Algebra, fundamental theorem of,
198.

Algebraic solution, 225.

Alternating series, 341; error in
computation by, 343-

Alternation, proportion by, 136. 4

American Experience Table of Mors

tality, 278. £
Amount, compound, 2535‘"?{ an

annuity, 258, - &™
Amplitude of & complex h}mbcr, 179,

Annuity, 258; amoufubyof an, 258;

present value ofigy, 259.
Antilogarithm, ,{'3”2; finding the, from
tables, 235,
Approxintate numbers, 238.
Al}prox&ons, successive, to an
irragignal root, 208.
Argninent of a complex number,
~Fi.
thmetic means, 159,
Arithmetic progression, 157; nthk
term of an, 157; sum of an, 157,
Arm, lever, 26. :
Associative law, for addition, 3; for
multiplication, 4.
Assumption, fundamental, regard-
ing & limit, 332.
Assumptions, fundamental, 3.
Axes, coordinate, 16.
Axioms, 4,

Axis, of imaginaty numbers, 17’(, Bf\
real numbers, 177. N

Bage of logarithms, 228;‘cha§ige of,
249, €7

Bases, logarithmiéy@ther than “10,”
247. .

Binomial, 9. . \)

Binomial cdgi;!cients and eombina-
tions, 27

Binomial\ormula, 147; general term
of, 150.

Bitiomial series, 153,

+Rinomial theorem, 152.

““Bécher, Maxime, 316,

* Bounds, upper and lower, for Toots,
194.
Braces, 6.

Brackets, 6.
Briggsian logarithms, 248.

Cardan’s formulaz for roots of a
cubic, 220.
Change of base of logarithms, 249.
Character of roots of a quadratic
equation, 93.
Characteristic of
tule for, 231.
Coefficients, binomial, 271; of an
equation in terms of roots, 226.
“Cologarithm, 243.
Combination, 270.
Combinations, number of, 210,
271.
Combined variation, 137. .
Common difference of an arithmetic
progression, 157.
Common logari
Common Tratio

gression, 160.

a logarithm, 230;

total,

of & geometric pro-
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Commutative law, for addition, 3;
for multiplication, 4.

Comparison series, 334.

Comparison test for series, 332.

Completing the square, 78.

Complex fraction, 54,

Complex number, 72, 173; absolute
value of a, 179; amplitude of a,
179; argument of a, 179; imagin-
ary part of a, 73, 173; modulus of
a, 179; real part of a, 73, 173.

Complex numbers, addition of, 73,
174, graphie, 177; conjugate, 73,
174; division of, 74, 175, in trigo-
nometric form, 181; graphic addi-
tion and subtraction of, 177;
graphic Tepresentation of, 177;
multiplication of, 73, 174, in
trigonometric form, 181; polar
form of, 179; powers of, 182; roots
of, 183; subtraction of, 174,
graphic, 177; trigonometric form
of, 174.

Composition, proportion by, 136. 4.
Composition and division, propdr=s

tion by, 136. O
Compound amount, 253. N\
Computation with logarithms, 238.
Conditional equation, 204
Conditional inequalitigs, 127.
Conditionally conv nt series, 345.
Conjugate complex numbers, 174.
Conjugate imaginary mnumbers as

roots of ai\squation, 198.
Conjugat®surds as roots of an equa-

ti Ti§ 200.

Congistency of equations, condition
' ofer,"314.

~Qonsistent equations, 313.
PR "\Constant, 13; of proportionality, 136;

of variation, 136.

Continuous funection, 192.

Convergence, 330; absolute, 344;
conditional, 344; interval of, 348;
comparison test for, 332; necessary
condition for, 331; ratio test for,
335, extended, 346.

Convergent series, 330.

Conversion period, 253,

Coordinate axes, 16,

Coordinate paper, 16,

Coordinates, 16,

Cube roots of unity, imaginary, 220,

Cubic equation, 218; Cardan’s form-
ulas for roots of a, 220; reduced,
218; resolvent, for a quartie, 223
footnote.

Cubic surd, 109,

Decimal point, standard position of,
230.

Decimals, repeating, 166, Q)

Degree, of nn cquation, 106; bi'an
expression, 106; of an infegral ra- |
tional cquulion, 187 ofbn iftegral
rational expression, 38, 187; of a
polynomial, 11 f6dtnote, 187; of &
term, 21, 38, 1D6.

De Moivre’s theofem, 182,

Denominator, lowest common, 39
rationadiding the, 66.

Dependent equations, 30, 311.

Depé{[dent events, 281,

Dependent variable, 13.

Depressed equation, 207.

Descartes’ rule of signs, 201.

" Determinant, of order n, 300; of

order three, 205; of order two, 293;
elements of a, 204; expansion of 8
301, 306; positive and negative
element of a, 301; principal diage-
nal of a, 204,

Determinants, properties of, 301
solving linear equations by, 94,
297, 309. )

Development of a determinant, 306.

Diagonal, principal, of a determinant,
294, :

Dickson, L. E., 196. . i

Difference of an sithmetic progre
siom, 157,

Differences, finite, 350.

Differencing, 350, 038

Digits, significant . .

D;i:liu:ishg:;}g thie roots of an equation;
211. . ;

Discrimisant of a quadrafi® equa
tion, 94. L

Distributive law for multipiestio?
with respect to addition, =

Divergence, 330; compalisol test df:é"
332; ratio test for, 335, extences
346,

Divergent series, 330.
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Division, 5; of complex numhbers, 175,
in trigonometric form, 181; of frac-
tions, 53; of polynomials, 11; pro-
portion by, 136; of radicals, 70;
rynthetic, 189; by zero, excluded, 5.

Double root, 94, 197.

¢, hasc of natural logarithms, 248.

Rlements of a determinant, 204;
positive and negative pairs of,
g01.

Equation, 20; conditional, 20; eubie,
218; depressed, 207; exponential,
246; formation of an, with given
Tocts, 98; identical, 20; integral
rational, 187; linear, 21; members
or sides of an, 20; quadratic, 76;
quartie, 222; solution of an, 20.

Bquations, consistent, 313; depend-
ent, 30, 311; cquivalent, 57; frac-
tional, 56; homogeneous, 314;
homogenecus linear, 314; incon-
gistent, 29, 211; linear, solution of,
by deferminants, 294, 295, 809;
non-homogencous, 314; | quad-

ratic form, 87; radical, 90; sym-
metrie, 113; systems of linear, 28,8

30, 203, 205, 309, 311, 313, 315,

;f;th more equations th&?:}aun.
owns, 313; systems of guadratic,

nowns, 3133 ¥ \ @

Equivalent equations, &7

Error in computation’ by siternating
series, 343. .\

Expansion, bidomial (sec Binomial
formulaBn i)

Expansiod ‘of a determinant, 301,
306; &y minors, 3(4.

Expectation, 279.

Ztpected number, 279,

Ezponent, 7; zero, 61.

Exponential equation, 246.

Exponents, fractional, 60; laws of
62; negative, 62.

Expression, degree of an, 106; inte-
gral rational, 38; mixed, 50; prime,
39; simplest form of a radical, 63

Extended ratio test, 346.

Extraneous roots, 57.

Extremes of a proportion, 135.

Factor, bighest common, 46.

_Fractions,

_Fupction, 13; continuols,

Factor theorem, 188; comverse of
188,

Fagtored polynomial, graph of a, 200.

Factorial r {rl), 150,

Factoring, 38; by solving 2 quadratic,
99; suggestions for, 44.

Ferrari’s solution of a quartic, 224.

Pigures, significant, 238,

Finite differences, 350.,

Finite series, 328.

First differences, 350.

First-degree equation
equation), S

Formation of an equation wih given
roots, 98. N

Formula, binomial, 147, gengeral term
of, 150. 'S

Fourth proportional, 135.

Fourth-degree pquation {(see Quart-
tic equation),

Fraction,gomplex, 54; rational, 319,
propernaid.

Fractional equations, 56.

Fractional exponents, 60,

49; addition of, 50; divi-

‘sion of, 53; elementary principla

of, 49; lowest common denomina-

tor of, 50; multiplication of, 52;

partial, 319; powers and roots of,

52; signs of, 4%; subtraction of,

2§

5. .
Frequency, relative, 277.

Fulcrum, 28.
192; gep-

eral quadratie, 13L; quadratic,
graphic representation of #, 102,
Tagimum ©oF minimum value of 8,
103, zeros of &, 102; integral
rational, 187. .
Fupdamental assumption regarding
« limit, 332.
Fundamental assumptions, 3.
Fundamentst operations, 5.
Fundamental principle in pormuta-
tions and combinations, 265.

Pundamentsl principle regarding
zeros of 4 continuous function,
192.

Fundamental properties of inequal-
jties, 128.

Fundamental theorem of algebra,
196,

(see Lingsk "

N
h 3
W,
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General quadratic itmcﬁdn, 131.

Index, of a radical, 60; of a root, 7.

General term, of an arithmetic pro- Induction, mathematical, 143,

gression, 157; of binomial form-
ula, 150; of a geometric progres-
sion, 160; of a series, 328, 352.

Geometric addition and subtraction
of complex numbers, 177.

Geometric means, 162,

Geometric progression, 180; infinite,
164; limit of sum of an, 164; nth
termn of a, 160; sum of a, 161.

Geometric series, 164, 335; Hmit or
sura of a, 164.

Graph, 17; of a factored polynomial,
200.

Graph paper, 16. .

Graphic addition and subtraction of
complex numbers, 177,

Graphic representation, of eomplex
numbers, 177; of quadratic equa-
tions, 11%; of a quadratic function,
102,

Graphic solution, of lincar equations,
29; of quadratic equations, 119,

Inequalities, 127; absolute, 127; ¢on-
ditional, 127; fundamental prop-
ertics of, 128; solution of, 130,

Inequality, sense or order of an, 127,

Infinite geometric progression ox
series, 164,

Infinite series, 328 {ses also Serjes),,

Integral rational equation, 187;°dés
gree of an, 187, A

Integral rational expression,(38;de-
gree of an, 187, "\

Integral rationzl functiop, 187; de-
gree of an, 187; J@h%difcrences
constant, 352, ¢,

Integral rational.polynomiel, 9.

Integral rational\term, 9,

Interest, 25{; Jate of, 253, nominal,
253, NV

Interest{périod, 253.

Interpolation, 233, 355,

Interval of convergence, 348,

Inverse variation, 137.

Graphs, 16; in solving inequalities,, Inversion, proportion by, 136.

130,
Grouping, symbols of, 6. N\

Hall and Knight, 352 foota;gté.
Harmonic means, 168, ,{ %
Harmonic progression,\gst? N
Harmonic geries, 352,

Highest common faster, 46.
Homogeneous syifations, 314.
Homogeneous,linear equations, 314,
Horner’s method, 213,
Hyperbp‘g{:légaﬁthms, 248,

i, ing}a,ginary unit, 72, 173.
Jdentical equation, 20.
{ Nentity, 20.
Imaginary cube roots of unity, 220.
Imaginary number, 72, 173; pure,
72, 173.
Imaginary numbers, axis of, 177.
Imaginary part of & complex num-
ber, 73, 173.
Imaginary roots, 198,
Imaginary unit, 173.
Inconsistent egquations, 29, 311.
Independent events, 283.
Independent variable, i3,

*Irrational number, 3% [ootnote, 205.

Irrationzl roots, 208; successive ap-
proximations to, 208; Horner's
wethoed for finding, 213,

Joint variation, 137,

Taw, associative, for addition, 3, for
multiplieation, 4; commutative,
for addition, 3, for sultiplication,
4; distributive, for multiplication
with respeet to addition, 4.

Laws of exponents, 62.

Laws of logarithms, 236,

Lever, 26; arm, 26.

Limit, fundsmentsl assumption re-
garding a, 332; of an nfinite
geometric progression, 164; of 2
sequence, 320; of a series, 380.

Linear equation, 21. )

Linear equations, graphie solution
of, 28; homogeneous, 314; solution
by determinants, 204, 207, 309;
systems of, with more equations
then unknowns, 313.

Logarithm, 298; characteristic of 4,
230; mantissa of a, 230, 233; of 2
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power, 237; of a product, 238; of a
quetient, 237; of a root, 238.

Logarithmic bases other than ¢10,”
247,

Logarithms, Briggsian, 248; com-
mon, 24%; computation with, 238;
byperholie, 248; laws of, 236;
Napierian, 248, natural, 248. .

Lower hound for roots, 104,

Lowest common denominator, 50.

Lowest common multiple, 406.

Mantissa of a logarithm, 230; finding
the, 233.

Mathematical induction, 143.

Maximum value of a quadratic fune-
tion, 103,

Mean proportional, 135.

Means, arithmetic, 159; geometric,
162; harmonie, 168; of a propot-
tion, 185,

Members of an equation, 20.

Method, Horner's, 213; of successive
approsimations, 208, i

Minimum value of & quadratic func-
tion, 103. 9

Minor, 304. N

Mixed expression, 50. %

Modulus of a complex numbet;179,

Moment, 26. ¢ < N

Monomial, 9. \ N

Mortality table, 278,

Multiple, lowest golitmon, 40,

Multiple root, L9,

Multiplication, a\ssmiative law for, 4;
commumﬁié law for, 4; of com~
plex nfimbers, 73, 174, in trigo-
nomefgie form, 181; distributive
lywYor, with respect to addition,

&yof fractions, 52; of polynomials,
9; of radicals, 69.
Multiplicity, order of, of & root, 197.
Mutually exclusive events, 282.

Napierian logarithms, 243.

Watoral logarithms, 248.

Negative exponents, 62.

Negative pairs of elements of a
determinant, 301.

Negative roots by Homer’s method,
215,

Nominal rate of interest, 233.

4

p series, 335.

Non-homogeneous equations, 314.

Non-trivial solutiens, 315,

Numbet, complex, 72, 173; expected,
279; imaginary, 72, 173; irrationsl,
39 footnote, 205; pure imaginary,
72, 1'73; rational, 39 footnote, 205;
rounding off a, 234.

Number of combitations, 270; total,

271. _
Number of permutations, 267; of

things some of which are alike A\

268, X
Number of roots of an equation, 19
Numbers, approximate, 23?;.’;;011311-

gate complex, 73, 174, .8
Numerical equation, SL{gggations for

finding real Tootsvof g, 215.
Numerical serieg\finding any term

of a, 352; sQJ{qnat.ion of, 356.

Operetions, fufidamentsl, 5.

Order, of\g determinant, 204, 208,
300; 'of zn inequality, 127.

Qrdet of multiplicity of & root, 197.

Qrdinate, 16.

Origin, 16.

Parabola, 102.

Parentheses, 6.

Partial fractions, 319,

Pascal’s triangle, 150,

Period, intereazigﬁ 253.

Permutation, 200.

Permutations, nurmber of, 267; of
things, some of which are alike,
268.

Plotting, 16.

Polar form of
179.

Polynomial, 9, 48, 187; degree of a,
11 footnote, 187; gra.p].:\ of a'
factored, 200; integral rational, 8;
location of Teal zeros of 8, 182.

Polynomials, division of, 113 multi-

ication of, 9.

Pog}ltive pairs of elements of & de-
terminant, 301. .

Power, 73 exponent of 8 7; logarithm

interval of com

of a, 237.
vergence of &, 348.

a complex number,

Power series, 347;

Q
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Powers of complex numbers, 182; of
fractions, 52.

Present value, 254; of an annnity,
259.

Prime expression, 39,

Principal, 253.

Principal diagonal of a determinant,
294,

Principal root, 61.

Principle of proportional parts in in-
terpolation, 234,

Principle regarding zeros of a con-
tinucus function, 192.

Probability, 277; of dependent
events, 284; of independent
events, 283; of life and death, 278;
of mutuaily exclusive events, 282;
relative frequeney and, 277; in
repeated trials, 286,

Product, logarithm of a, 236.

Product of roots, of an equation,
226; of a quadratic equation, 97.

Progresswn, arithmetic, 157; geo-
metrie, 160, infinite, 164; har-
monic, 167,

Proper ratmnal fraction, 319,

imequalities, 128,

Proportion, 135; by alternatiod 186
by composition, 136; by, c,bn-nposx-
tion and division, 13() { cﬁvlmon,
136; extremes of a, 1 by nver-
sion, 136; means of‘ &, 130

Proportwnal fourth 1‘35 mean, 135;
third, 135. A

Propomonal pa(ts interpolation by,
234, ¢\

Proporti ity, constant of, 136;
prmdple of, in mterpolatmn 234,

Pure lmagmary sumber, 72, 173,

Qnadrat;c equation, 76; character of
rools of a, 93; dJscmnmant of a,
94; product of roots of a, 97; solu-
tion of a, by completmg the
square, 78, by factoring, 76, by
formula, 79, sum of roots of a, 97.

Quadratic equations, smmltaneous

¢ 106; in two unknowns, 106.

Quadratm form, equations in, 87,

Quadratic formula, 80,

Quadratic functmn, genersl, 131;

graphic representation of a, 102;
maximum oF minimum value of & @,
103; zeros of a, 102,

Quadratlc surd, 199; conjugate, 200;
roots, 200.

Quartic equation, 222; Ferrari’s solu-
tion of a, 224,

Quotient, logarithm of a, 237

Radieal, 60; index of =, 60.

Radical equations, 90.

Radical expression, simplest fm‘m
of a, 68.

Radicals, addition of, £9; d;mon of,
74, multlpllmtmn ef,, 69; sub-
traction of, 69.

Radicand, 60, ‘€%

Rate of mteresty 258 nominal, 253.

Rano, 135; of 2 geometnc progres-
glon, 1(3(]

Ratio test R}r series, 335; extended,
346N\

Ratwnal fraction, 319; proper, 319,

Ratiomal integral equation, ete. (see

~Ndntegral rational cquation, cte.). 3
“Rational number, 39 footnote, 205.
Properties, of determinants, 301,‘of' :

Rational roots, 205.

Rationalizing the denocminater, 66.

Real nembers, axis of, 177, -

Real part of a complex pumber, 73,
173.

Real rootg, suggestions for fnding,
215,

Real zeros of a polynomial, location
of, 192,

Rectangular coordinates, 16.

Reduced cubic, 218.

Relative frequency, 277.

Remainder theorem, 187.

Repeated trials, probability in, 286.

Repeating decimals, 166.

Resolvent cubic for a quartic, 223
footnote.

Root, double, 94, 197; of an equation,
22; index of a, T} logd.rithm of 4,
238 multiple, 197 of a number, 7,
60, principal, bl gimple, 197;
tnple 197, .

Roots, character of, of a quadratic
equation, 93; cueﬁiment.s in terms
of, 226; of complex nurabers, 18<“f
equatlon with given, formation O



INDEX

381

an, 98; extraneous, 57; of frae-
tions, 52; imaginary, 198; imagin-
ary cube, of unity, 220; irrational,
208; mumber of, of an eguation,
196; product of, of an equation,
296; of fa quadratic equation, 97;
quadratic surd, 200; raticnal, 205;
suggestions for finding real, 215;
sum of, of an cquation, 226, of
a quadratic equation, 97; trans-
formation to change signs of, 195,
to diminish, 211; upper and lowet
bounds for, 194,

Rounding off a number, 234.

Rule of signs, Descartes’, 201.

Second differences, 350.

Second-degree equation {see Quad-
ratic equation}.

Sense of an inequality, 127.

Sequence, 328; liwit of a, 320.

Sweiwa, 328; alternating, 341; bino-
mial, 153; comparigon, 334; com-
parison test for, 352; convergent,

330, absolutely, 345, coadition- «
ally, 345; divergent, 330; finitg\"
328; general term of a, 328, 35257

geomctric, 164, 335; hamooic,
332; mfinite, 328; Hmit of 8, 330;
with negative termsg 3445/, 385;
numerical, finding ambg rm of a,
852, summation of &, 356; power,
847; 1atio test for, 335, extended,
246; sum of 4, $31.

Sides of an eghation, 20

Significant(digits, 238.

Signs, \]};‘QE{E 7 mile of, 201; of
frachions, 49: of products and
hetients, 5; variation in, 201.
~gimple root, 197.

\\Simplest form of a radical expres-
siom, 68.

Simultaneous equations, linear, 2§,
30, 203, 295, 309, 311, 313, 315;
quadratic, 106.

Solution, of an squation, 20; alge-
braic, 225; non-trivial, 315; triv-
ial, 315. the, 78
zare, completing the, V&, .

g:landa;d position of decimal point,
230.

Subtraction, 5; of complex numbers,

174, graphic, 177; of {ractions, 50;
of radieals, 69.

Successive approzimations to an ir-
rational root, 208.

Sum, of an arithmetic progression,
157; of a geomefric progression,
161; of an infinite geometric pro-
gression, i64; of a numerical
scries, 356; of a series, 331.

Sum of roots, of an equation, 226; o
s quadratic equation, 97. O

Summation of a numerical series’)
356, \,

Surd, 199; conjugate, 200; eubic,
199; guadratic, 199; xoots, 200.

Symbols of grouping, 0L

Symmetric equatiods; 113.

Synthetic divisibua18D.

Systems of linedt ‘equations, 28, 30,
203, 205,/300; 311, 318, 315; with
morg e?uétion.a than unknowns,
LTEZNS

Systemd of quadratic equations, 106.

:'i‘erﬁ:, & footnote; degree of 8, 21, 38,

b 106; integral rational, 9 {see also

General term}. )

Terms, of an atithmetic progression,
157; of a geometric progressict,
160. o

Test for serles, cOMPAISOND, 332;
ratio, 335, extended, 346

Theorem, binomial, 152; De
Moivre's, 182; factor, 188, con-
verse of, 188; fundamental, of
algebra, 196; remainder, 187.

Third differences, 351,

Third proportional, 135. .

Third-degree equation {see Cubic
equation }, .

Totgl numlaer of combinations, 271.

Transformation, to change signs of
roots, lgsa;sctgl ,dinlﬁﬁxgsh roots, 211.
riangle, P 5, .

gﬁgonoer:mtric form of a complex
number, 179

Trinomial, 9.

Triple root, 267.

Trivial solution, 315,

it imaginary, 72 173.
gﬂ;:;,’ imaginary cube roots of, 220.
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Tpper bound for roots, 104,

Value, absolute, 165 footnote; of a
complex number, 179,

“Value, maximum of minimum, of a
quadratic function, 103,

Variable, 13; dependent, 13; inde-
pendent, 13.

Variation, 136; combined, 137; con-
stant of, 136; direct, 136; inverse,
137; joint, 137; in sign, 201,

Vector, 177,
Vinculym, 6.

Weisner, Louis, 196,

Zero, division by, excluded, 5; expon-
ent, B1; of a function, 187; of a
quadratic funetion, 102.

Zeros of a polynomial, location cﬁ\
real, 187. KA\
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Answers 1o

Odd-Numbered Exercises

Exercises I. A, page 7 g ‘O
1. 8. /3.4a+2b-—c—-c"gb>}-ac.
T

5. 96p + 64q — 24r 4 24s. .2a—-38b-39.

9. z— (z+ 2 T 3). 11, o — (—2pa-8e + 4d).

Exercises I B, page 8 PN ‘\

1. &% 3. =7 5. 12p% 7. 9a°
N 7zt

9. —i6at. 11, 642, 18,7825 16. =5

17. L. 19, — 3. Na e 23. o’

S _ 2t3<
26. 242%, a7. ﬁa:é:;;

Exercises I. C, page\]
1. 22% 4 322 < @54 2L 3. 124% 4 16a® — 41a — 15.
5. 4nt — 16040 = 12m* + 24m + 9. :
1. 224 g Taty? + 197 — 154
9. 205 Gt + 227 + 202 — 13z -+ 6.
11, 1408 1 13g5 + 18a% — 29¢° — 40a® + 502 = 8.
13.960° — By? + 422 — Bu? + Bay — 11oz — 130w — 10p2 + 13yw
Q) + 19zw.
\16. 4g5 + 122 4 9b4 17. 6 + b + & + 20b — 2ac — 2be.
19. 22° 4 25 4 10a% — 2022 + 21z — 6.
21. =t — 3%y + 3zp° — o~
28. 36a* — 156a% - 241a%? — 156ab® + 38b%,

Exercises I. D, page 12
The first expression given is the quotient,
1i the latber is 0 it is not given.
1, 22— 3z — 2. 3. 2z + 3.
6, —3x24-2x— 4 7, 4g% — 28 + 16
383

the second is the remainder.
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9. 3z + 2y. 11, % — 5z — 5, —12,
13. 4z — 2, —15z 4- 10, 15. 2% + 52 + 23z + 15, 75.
17. = + y, 2y% 19. 2 + ay + o7 208

21, z* — 2y + 2% — 2 + vt 23. o + 2470 + 2ab? - 85,

Exercises I E, page 14
1.2,58 —1, —4, 3a® 4 2, —3a + 2, 5 — 3y.

3. 4,2, 14, 44, 9704,
B. 6, —15, —32, —%, — &%, 8! — 200 + 12,
7. 4a® — 1. O\
3 9 a 2a wd? £\
S, =2, 8, 8, 2. 14 =fd) = = _C
57523 ==
62 \ 3
13. A= =— 15. d = t-60£¢~
fle) = . f®) &
1. L = f(r,h) = 2xrh. 9. = (V= :3’—];:-
o
Exercises |. G, page 19 \
1. 40 — 45, 3. 621.'1 — 306 — 32.
B, 28z + 6y + 122 — Ozy + 9rz. T \2245b7c5,
Q. 122545, n., Oxt 4 g8 — 2727 4 41z — 14,

13. Bt — 252 + 1722 4 28z — 20

16, —zf — 28 4 1222 — T —60 "

17, 322 — z 4 4. 19, 222 — 7 — 4.

21. 4,3,9,18, 624, 4, 8@%'%\611 + 4, 1862 — 9a + 4, 2a® + 5a -+ 6.

Exercises Il. A, page 3
o — b

1. —7. 3*\6 8. = 7. . 9. No solution.
,\,, 1 — c
RN} 4z — 7
1. (a)\y‘*’ JOE=S b, wm@? :(b) et
1. \%?—2- 17. 27, 24, 19. 47, 49, 51, 53, 55.
\21. 3%in. X 61in,  23. 35,7, 25. 1230 at $1.00, 770
. 5 gal. regular, 7 gal. ethyl. at $1.50.
29 40. 31, $5650 at 39, $2350 at 359.
33. 100 mi. 35, 450 mi. 37. 1528 {t. (approx.).
239, 437% min. 41, 9:20. 46. 51 ft. from 60-Ib.
47. 150 1b, 49, 6 ft. child.

Exercises Il. B, page 31
1, 283, —33. 3. 7, ~3, 5. —8 —1L
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7. 10, 4. 9. Inconsistent. 1L —12, 17,

13. i, — %4 15. 15, 2. 17, 7a, 4a.

19, 4, —6, gy 3 5. g 1260406 1050+ 24
a b 43a 43a

25(21}. —2—; S at. —~1,3, —5. 29, -3,2, 7.

31 3) _27 2. 33. 2) 41 6. 35, %} _%! 'i"

37.2,1,0,3 39 11,5 2 .

A\

Exercises I, C, page 34 O

1. 57, 16. 3. 12, 18. A\

5. 24($1.50), 28(§2.00). 7. $1250at3%, $67508423%-

9. 220 mi. /hr., 20 mi. /hr. 11. 840 mi., 100 mi, & ©

18. 117 ft. /sec., 39 ft./sce. 15. 32 1b. (15c.), 48Jb. (20c.).

17. 51($25), 18($50), 3($100). . N

19, 10 hr. (A), 15 hr. (B), 12 hr. (C}. D

21, 72. \

Exercises fll. A, page 45 N )
1. 20y(2z - 32). «3. 4z + By){dr — BY)-

5. 2(30% 4 2)(3cF — Z). AN T (Ba— )%

9. 2(7a — 4x)™ AV 1 -0t
18. 5— D2+ 2. AN 13. g - 2?1(2):26-;- 3).5@)
17. (35 + 2)4z + N 19. (3x — 4y)(6z — By).

A \ 23. (a”-l—l){a—*l).

21 (@ + 2)(3z + 5.
9. (¢ + b)(a? —ab+ b2+ 1). 2T (y)-l— r—-Dy—2+2h
29. (3a + % r— ) (B2 + 26 — 2+ ¥k
3L E2§ — B 33. (2> + 2@ — 2 + 4).
35. (2 4B (at — a¥* + 0%, 30 3@+ o) (& — ).
39, (@1 b9 (a® + 83(a + D)o — D).
410 & ) (et — a®b* + %)

...,4\,’3“\2(2&2 + 2ab + bz) (2&2 — 9ab + bs!)_
db. (32® + 3zy — 293 — 3%y — 2@;:).
47, (5a? -+ Sab + 7b%)(5a® — Bab + b7,

49. - 3)@ — 39):
52- g;—-ﬁ)gz) (33:::)”(“1‘!-5?;2?. « B8. (z — N4z — 3.
86. a¥(a + o){a — ¢). BT. 135 59. 1':{97.

Exercises Mi. B, page 47
8. z+y &+ k- y}-5) o — )
. 2 (3x + 22z — — 3)-
g'. ?x (-gla; (+ gb*-‘)iy(mz 459, 9. 225ab, 50625a%6°”-
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11, 22 — oy + o2 2(2® + ). 13. a% — 2ab + 25% oot 4 404,
15, 2% ++ %, (& — y¥=® + yY). :

Exercises IY. A, page 51

2_1;_2" x4 5 dr— 4 7 29 9 he + 2y
T 347 Tx 46 T r—2 a6 Cat— 4y
b — 3 1
n _F—18 S N S
z?— 8x + 15 (o + 62— 3u — 26
1 t+y— 2 1+ ab— 42
T -y —ae - C (o — by )
z_. = 2N o
23. M- 20 Hx + 14 4 68 o\
a— 4b r—4 :.,}‘
27 0p — 4 5B 29. & + 4 — D2t 87
3 8x-—-2 2% N
Exercises IV. B, page 53 RN
Gbaz? 3 {4 1z 3+ &) \\; 21212
" 10ac* ) g2 WO 160y

T @+ )@ — 2y 4 4.

5 o3 e
1, 22, 13. 2z +9).
Exercises IV. C, page 55 >\
2 41 6
1. 3, . —
) T B g
0. 271, @ 5% 13. 1 —z
T x,\’“: 22—z
1. @ 1%6&1* 5 .
_ g\ 5.3)2
.Exgr\zcgfés IV. D, page 59
D3, 3. —12. 5. —3. 7. No solution.
. 3, —5. i1, 2, 13. 270 mi., 45 mi, /hr.
Exercises V. A, page 63
1 6. . 3. 3a°. 6. 8a?. 7. 222,
2
9. 5. 1L a2 g3, 2006 15 2.
x o
256 -
T, — -18. . 21. 16a8, 23 i .

B . - a8
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4aphes
eiadle 29 290

5. =2 . o 1. . ==, )
9xty? : 1728 8.t
— 3
33, — E— W, 35. a%(a + 1).
2
C g 4 Bl
a7, — L0 39, 62% 4 Tt — 20 + 12,
2abe A~
41, 421978 — 1351870 — 25710 |- 15515, .
43. 2% + 5 — 3. 46, 4.56 X 10°% 47. 168 X 1074, ()
49. 3.5 X 10°. 51, 9.20 X 107, 53. 7.594 X 1075~
55. 3.9 X 10%, 57, 5.1 X 107, 89. 2.5 X 1004
Bl. 587 X 102
’\'\.'
Exercises V. B, page 65 '®)
1. e - 3. 3ede®V 2ab%d%. 5.\?“»»3\/' duch’,
{9y 8beV
7. 0.522V/2z. 9. 226V/3. N ﬁ'
13, 2V, 1 Vg, O 1 VT
19. \E : 21, vV —wi v 28, Vi,
i LN
25, Vgmat, 27. véus 28, Va.
a1, AJ22. 38V oy 36. Vay.
13b \'\w’
Exercises V. C,’p'fgg 67 . o
L2VEB O NY V4 5 2V
N "2 \5/?_1_
7 2V b 9. v 122y 11__.'1_8.
e e Ty a
Mw\\/?Jr\/z- 15 V- Vy, 1-,,7_"_._‘/_-33.
s *-Y \/‘4
a+b—2Vab g 2T VO V2,
19. —-—“"-b—'——' - 4 '
-
g3, Y3+ 3V + V30 gy, Pt B v
" 12 a—b
29. 2.121. 31 —17.944. 33. 5.940.

i D, 48
Exercises V. D, page o 2 m.
1. 3ab%*V 2ac. 3. 20ysV 2. b —5
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7 V y 0 3V/245qh " v ozy
’ 2y ) 7h ’ 2y
y2 _ pl2 V1145 Tyl
13, G =B 5, Y1II+VE o (:i) .
a—>b 6 iz
V15 + V10
19. 3V3+ V6 20 5—3VG, 23. _1_0%__,9
/_ _ ;.\
%6, oy V2, 97. 5V ab. 29, M .
- r:\t\.
Exercises V. E, page 70. o NS
1. 9V, 3. V2. 5. &ﬁm’ N
7. 14 + 22 4 2V2, 9. 272 — 260,
pt )
8V 15 ) /—*—
) . 24 e BV
11 5 13. ( x + ~%,+ 32)
15. V78, 17, 7V ’ x\19. V7.
173 AANY - —
21, 2V/54. 23. 3? 3\ 25 Al
27. 81V3. '29 35— V1
31, 2V'3 — 2V72 4+ 3VR64 — e.a\fb
33.x+\/——\/_2+2‘/—3 35, 22 — 5z 4 18,
v .
37. V25, \\‘~ ) 39. 35125-
v 30 ..,:.:,‘ '1\12 32a7h%"
.= & 43—
£ ) a
&1 N L
45. —3—?”{-3\ 1. Ve, 49. 0. 5L 0.
S
53. 2# PV pt — 4q. 55, 0.
E)(ércrses V. F, page 74
N/ . . -
1. 6 4 3i. 3.7—iV6 b &+ 3 7. —§+ ¥
\/_
+3—- 1, —2+2v2.4  13. 6 + &.
15. 1 - m‘. 17. 15 — 3i. 19. 8 + BV2 -4
21. %3 + é-‘g-gz'. 23. V15 4 30 + (5V10 — 3V/6)i.

25. 5+ 34 ' 27, —13 + 63 14
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29. _
1. —0 4 144, 33. 1; - 2——‘510 B, 2 4 230,
37. —16 + 19V/5 4. 89. —12— 27V3-i. 4L 194
43. —%-» §¢ 45. a® + b, . —2 42
49, 1. BL. £8 — &1 63. —g%t/ggi .
54 4TV6 . 3 10V38 w3 O
o AV e S 59—+-—1 R\
T T Bt TR O
o -_)\/——3'\/_ V3. L S S
* 12 () - . a? L2 at + ¥
a— b %0k . o0
65. i, 6.0 v
({12 _|__ bﬂ)g + (a‘j. + bﬁ)ﬂ '\\‘;
Exercises VI. A, page 81
1.2, 7. 3. —2, —6. B 1a,~"'-r.4,4. 9, 1 + 2.
11. 4, 6. 13. 1, 125. 15 :1:1 W oqg o 10 22V2
\ —5 £1V3
21. 4, 24, 23, 6 SW1a. 2. —
AN 1 VB
27. %, ~3. 3 -4 —1 8. —3
g5 22V3 SO g5 ] =2VBi, g g4
P \a/' V5 =T
v 8 115 5T,
5@ a1. :':17' 2 8%
g5 BT £ V158 59:7 L VIS g1 3 49. 0, 5.
N L vk
CUBL. 4, 3~ 58, 0.4, 0.5 86, 3 & V&
5y, 30 = \k/i) . B, by, 61. (4 = V2.
]_ —
By 3y 1 2V —dy— o
63. (—2 £ iV6)y. 85 .7 g 67. 1 Y

IV3E 4 3VE -+ BVE — 2VI)i.

69, 4 — 29 £ V36— 2 — P

TO(61). 4

14

70(63).

70(59)- _, --
—2£W0
10
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T0(65). 2—:, - %‘5- . TO(BT). —2 £ V4 o+ 9 — g2
70(69). 1 — g + %‘\/2:3(12 — ). 7L 17in. X 22 in.

73, 3ft. 76. 23, 24. 77. 32, 34, 79. 0.
81. 20in. X 24in. 83, 10 ft. 85. 2 mi. /hr,
87. 45 mi. /hr. 89, 24 min. :
93. (= + 12+ 4% = 49, (—1,0), 7. O\
96. (x — 3 + (y + 1)? = 16, 3,—1), 4. A o
97. (x —3)* + (y — 4)? = 35, (3,4), 5. RAY,
8. (z+57 + (y— 12 = 1, (—5,1), 1. O

101, (z + 13)* + (y + 15) = 576, (—11,—15), 24.

©+9 22 @+2°  oh
103. -1 g S WAV
0. =5+ 4 ;10 25 . N6
(—32},a=4,b=2. (—2,—1)NNE 5,0 = 4,
2 - 2 ?
w7, B L G- s VAT - 3vE
75 27 R
-3y 2
100, & 27” + YD -2, dVE b = Vi
5 A\
(467 (y+42)* O,
111 =1, (=852), a =8 b= 2
9/a Y i |
— o2 2 §
115. = 3) B ) NEB—4),a=4,0b=85

16 25 O

o\
2 _—
ur, 827 (1—»2%; 1, (~22),a =12, b = 3.
124 9 .
(z— 77 _ (y‘:'*:.“i)z

us. “— =L U e=20b=2

121. & ‘g\l 23(1:62? =1, (=12), a = 2V/2, b = V6.
N ’

123-.\%‘"?)—2‘ %y =L (-4-3),0=V6b= 3\:—3

{'2‘5."':\/3\/ (x— 4) - 4. 127. 2V(z + 5)% — 2.

129, V2V(z + 32 4 1. 131. V3V (z — $)2 — 5.

133, V3V/(z + )7 — 8. 135. V6V6 — (x — 1%

137. V2VE —(z F 3% 139. V0 —(x — 3)2.

141 VVE — = ¥ 12, 18 2VE — o —
Exercises V1. B, page 88

1. 22, 43 3. :I:%: i?zﬁ



5.1, —2,1 V3 “2:“/_
7. 3 s 9. 8 27. 11. 1296, 13. 1, 4.

15. 7 91 ﬁ' 17. %} %- 19, 1, _2, 2+ '\/E,

21‘ _1, __183. 23'3:E\/1_’7’3ﬂ:3\/§"£.

2 2
26. 3, —1. 27. 0, —3, =8 £ V17,
2

29. 497 ft. approx.

Exercises VI. C, page 92 ‘ R
1. 41. 3 %% 5. —32. AN, 22,
9. 25. 11. No solution. 13. 2, 15 §.

17. 3. i9. 1. 21, 25 it., 26{t’ 23, 13 mi.

) \“

Exercises VI. D, page 95
1. Real, unequal, irrational. 3 Inragmary
B. Real, unequal, irrational. JL Real, equal, rational.

9. Resl, unequal, rational, numpnfm,lly equal.

11. Imaginary. «1% 13. Real, unequal, irrational,

15. Imaginary. 19. § 21, —&L 23. 0, 32,

25, 3, a7 Aqy\alue 29. —1, —3. 81, Impossible.

33. 2. 35. \%asf 37. Impossible. 39, 1, 4.

41, -3, 43. Real, unequal, irrational.

45. Real, equai 1rrat10na.1 47, Imaginary. ‘

Exercises:\qn:', page 100 -

IS L e 3 -4 T.—4,0. 9850

1, ,g + 1, ﬂ. k%2, 18. —%. 16, & 11, 12.

19 4 : 21, o.

\23. — 12z + 35 = 0. 25. z2 — 8z + 16 = 0.

27, 322° + 4 — 15 = 0. 29, 2 —3 =10

3L x4 5 = 0. 83. 2+ 62+2=0

3. o — 4z +7 =0, 37. 0z* — 30z + 28 = 0.

39, 23502 — 150x + 43 =0. 4L 22— 2V2.2—-1=0

43. 22— 2V2 z + 5=0. 45. 182% — 33" — 882 — 15 = 0.

Exercises V1. F, page 101
1

ANSWERS TO ODD-NUMBERED EXERCISES

{12z 4 5)(2z — 125). 3. (2z + 1)(32z — 49).
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7. =+ V5 — V). 9. (z+ 3+ 20z + 3 — 20).
2 — \/?)
3

11 (3x—2—«/?)(x-

13, (z — V2 4+ V3 — V2 — V).
15. (z — V5 — iV3)(z — V5 + 1V3).

Exercises V. G, page 104

13. 0, min.; 2, 15. —9%, min.; —23, 17, 9, max.; —1.
19. —7%, min.; 14, 21. 4, max.; 2. 23. §, min.; §. \/‘5\:\.
25. —21 min.; —1. 27. §, min.; 1 29. i, min.; — \j—v .
31. 9, 9. 35. 80¢. 37. 7500 sgft)
..,'\*”

Exercises V. A, page 107 )

1. {3,4), {4,—3). 3. (0,0, ( l{ 4y,

B. 2 +V2,2 — VD), @ — V2, 2 + B

7. (6,2), (—3,—4). 9. (8;412), (~9,5).

11. (2+\/'3+2f),(2—\/_3-2xf)
13.( 34+ V1L, 2 3\/_) ',(4 V11, 39%2)

»

15, (4,3), (—1& — D). 17. (L2004, —2). 19. (1,—1), (—1,2).
21, No solut.ion 23 {l 15. 25. 9 ft. x 40 ft.

Exercises Vil. B, page\iﬂ9

. (4,3), 4,-3) (% 4'3)( 4,—3).

. {3,20), (3, 2{’},( 3,2i), (—3,—20).

. 2V3, \/& 2V3, —V3), (—2VZ, V3), (—2V2, ~V3).
. {(5,00; *—)0),each double.

(2\[\1 t\/ﬁ) (2\/_ %, —c\/_ ), (=243 -4, z\/_),
»&-—»2\/5 % —'%\/5)

S50 (). (22,50

-
(— 9&3, _ VoY, 13. 4v/35, 20/65.

5 5

W W W

Exercises Vil. C, page 112

1 (4)3); (4:-—3)} ("_4:3): (_4‘: _3)-

3. (4:4): {_4)_‘_4)‘ . .
5. (6,—3), (—8,3), (5V3, 4V'3), (—5V/3, —4V/3).
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1. (V3 2V, (—V3, —2V3), (JWB;H Vi),
_uva "_\/111)'

37 37
/114, vm_) ( w14, Vi
H

9 (1:2)9 (_13_2),-r( by ot "r
19 57 19 57
W3 V3 ) (_ 3
11. (2,—1), (= 21),( 3 Ta—g—

15. 7in. X 24 in.

Exercises VHI. D, page 115 .

1. (3,—2), (—2,3), (2,—3), (—32). o
3. (5,4), (4,5), (— 7+3\/7 1,*-7-—3\/7 \'),
(—7—3V7- z-—7+3v’? 0. 0Ny

5. (3,—2), (—2,3), GH—1iD, = —353
7. (1 +V2,1—V72), (1—\/@,1+v’2_),

(—1 + V3T -1 \/35‘) '(—1 - VE -1+ ‘@?)
40 4 3

4
3 —~9— \/_-3
9. (6,1}, (1,6), ——9\%@/: 2$ )

(*9 - f\@,ﬁ::—g + n/2'3).
2

? {'
O

2¢
11, 2014 n, ! ‘7}111

Exero:'\e\s Vil. E, page 118

L(J 5), (—=7,—5), (5,7), {— —5,7).
N6 (3,—-4), (—3,4), 18— 38), (—184%).
9. (3,1), (3, —*1) (—=3,1), (';)3 E;'*’ali)
11, (3,3), (—15—10), & »
3+ V137 9+ 3V137)

13.°(1,—2), (—2, 4}, —-———'—' 18

(3 ~ V137 9 - 3V137)
16
’ V10, 3«/ 3\/'6 3\/_6)
15. (44,34}, (—43,—31'),(

17 (1:'_-3)’( 1’3): (41 2} ('-4 2)

3. (5,5), (—5—5).
'f {5,3), (—3,—5).

{)-

38  21V58 12058 21VE
13. (3,—3), (—3,3), (M, =} (ﬂ. o ,_‘/i)—.&)
29 58 \ 29 B8
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21. 3 + V2. 23. V7~ V2
25. V15 + V/%. 27. 3V15 + 5v/10,
Exercises Vil F, page 121
3. 2. 5. 13. 7. —-g.
9, 14, 11, —4. 13. +16.
15. +rV1 + m?, 17, =Vaim® — 3%
Exercises Vil G, page 123
1. (3,3), (~2—%). 3. (2,6), (—2,8), (§,—1), (_gﬁ;i_m)_,\\'
5. (4,7), (—32,0). ] ~
7. (3—2), (-32), (13\/»10; 305 (_ 13\‘/ 105 28105
3 35 35N 35
Tl R— 9 - ~~\\’
9- (3 2) ( 23)’ (8+..;\/_|" 3 _r\/? E), }
1]
$—2v7.i 8+ V7 i N
5 5 \‘

. (44,27, (—20,440), (—42,20), (24, —4@}.~
13 (3\/‘+2\/’ 3\/6»2\/") (3«/5@)\/" 3v6 + 2V5),
(—3V'6 + 2v'5, —3v/6 — 2}
(—3V6 — )\f,~2«f+ NS,
15. (4,8, (—4,—8). 1% (Qﬁ) (—16,—7%), (~2,1), (—8,7%)
19. (1,3), (—1,—2), ({{ \/_), _i, -7

) ( 8—!—2\/526 i 2—3\1’326-1’)’
19

19
8—?\\256 i 12+‘3\/326 )
NG 19
5+5V3.i —343V3. s)
2 2

. (5,2},

23(,@,3)(3 5)(

\( 5—5\/5?, “5—'3\/31,) (,34-%\/3_, ; 54_3\/??

2 2

(3—3%_-1. q—oﬁ i

2

25. (5,—3), (~3,5), (1+a\/_1—n/_),(1-m/"1+z\/i‘7)-
27. (Qx/~ 3,31, (2,V'3,—34), (2,—V/3,31), (2,—V'3,—33), (—2,/3,31),

(—2,V/3,—3i), (—2,~V/3,30), (~2,—V/3,—33).
29, (2,—2,1), (—4,0,—3). 31. (8,—4,2), (2,—4,8).
33. 7in., 24 in. 35. 12, 24,

N\
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o~ :2}.

Exercises X. A, page 146

25.
36.

37. 8in., 15 in, 17 in. 39, 108.
41. 4 hr. 40 min., 3 br. 30 min. 43, 27.
2v46 2v79 2v106
45. ) ———12 . 47. 71t., 91,
3 3 3
49, 51 in. X 81in, 7 in X 65 in.
Bl. 7 mi. /hr., 2 mi. [hr. 63. 1 br. 45 min,, 2 hr. 20 min.
Exercises Viil. B, page 133 ' \
1z > 3.z>4 Bz >3 \.\"‘\
T.z<—lorz>6 %= <2#\/§orx >2+2‘\/§.
Wz <—3orz >5 13. x < —dorz > N
15, ¥ = any real number. 1. s <dorz>%°0
19 ~2 <2 <lorez >3 21 z > 1 but #8
23, ~1 <z <0orz>1. 25, ¢ < —3 orf'a\> 4.
27. z > —3 but #1 or4, 29. —13 g < —3orz > 2.
31, 2 <ax<lors >3 33.~7<z<%orx>3
1—‘1_"_ V2 -1 -]- \/_
3. k< —4ork > 0. : 37,.—;——2—-—<k
39. k 5 3. 4.k <—% é3?6<3—2\/§0rk>3+2‘\/-
45, —20 < k < 20, 4% Jc<1 49. —25 <k <20
51. k<-~-—*ork>27* 83, —5 <k <b.
Exercises IX. A, p gQ:IST
3.16,9. 533, 7.4, % 96 i 4
13. 940rpm -
15. (2) 1285 (b) 3.1251b., (o) 40 mi. fhr.
17. 1 day/y” 19. 16 it.
21. (a 225 Ib. /sq. in,, (b) 18 Ib. feq. in. :
23, 5 % 4 b, 27. 264.
\ a6 dv1s
14.7 amp. 31. 11.86 yr. B "%

False. 27, True. 99, True.  31. True. 83. True.
Falke. (True forn = 40 but fails for n = 41 )

Exercises X. B, page 148

LR .

. a8 — 8a7b + 28a%*

2® + Baty + 102%° + 102%° + Syt -+ zﬁ

5
.1+6z+15x2+20x3+15x‘+6w + = 4 TaB B

a7 - Ta% + 21a%* + 354%%% + 350 + 23

— 56afb® + T0a'ht — 56a% 4 28Rt —

Sab™ + b
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9. 2" + 102% + 452%® + 12027 4 21021 + 252255 + 210z%5

+ 120a%7 + 45x%® + 102p? + »'°,

11. 8% -+ 362y - Slayt + 2745

13. 1628 + 32 :vﬁ\/_—i- 2daty + SV fj + 1;—

16. #gz’® — Fealy® 4 A5ty — ANy 4 RELEGE  7on,sw
+ 720412,

17, o8y — 1825%1% + 135a1y%® — 5400%%2° 4 121522112
— 1458z3%1 + 728218,

19. 0.000322° + 0.00640z% + 0.051205%2 + 0.204805%° A
+ 0.40960zy* +- 0. ‘%27681; R\,
21. x% + 252y + 300522 4 2300x25° .

23, 2 + 32% + 3xy? + ¢yt — Sa%r — (J'ch— 3% + '%a:zz ;“f}‘
+ 3y — &,

25. 104.8576. 27, 112,550,881. 29, 1.1,.%‘74-,074,3.
31. 997,002,999. 33. 1,061,520,150601.

35. 1.1610. 87, 14839, N\

Exercises X, C, page 151 O

3. 2,44044007%, 5. —3093I5n )T 7. 1 45,5200,
9. — 30031%, 11, 151200% 5. 00 13, 1260z%%2.

15. 8. )

Exercises X, D, page 155 ~\°

1.1 — g+ 22— 23 ¢ 3.1+ 3z — o2+ Lot

5. 1 — iz + #2* — S22 Tol4 3r — F2% + P

9. 1+ iz — fa? + 15ue. 11, 1 + Odz — 0.122% 4 0.06425

The first number inythe answers to exercises 13-35 is obtained by
using three terms of the binomial series, The number in parenthebe‘s
is the correct ap.gm)umatlon accurate to the number of places given,

13. 1.0392 (1:0892). 15. 0.994,987,5 (0.994,987,4).
17. 9.8995(0:8095). 19. 4.8990 (4.8090).
21, 7.071064 (7.071068). 93. 5.657,407,41 (5.656 856).
25. 10196 (1.0196). 27. 10.00999 (10.00999).
2\3?;2.153 (2.154}. 81i. 3.03638 (3.03659).
337 5.03968 (5.03068). 35, 0.9898 (0.0898).
Exercises XI. A, page 159
1. 48, 255. 3. 218, 2750. 5. —22, —66.
7. 59.9, 30200. 9. 2%, 203, 11. 13, 234.
18. 11, 108.
16, 14}, 152, 17, 183, 192, 21, 221, 232, 17. 1381, 12687%.
19, —38,10. 21 —11%, 30%. 23. 9, 59, 95, 7, 14.

27. 13, 24, 29. 74. 3i. 31, 33. ¢, 4,
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35, n(n + 1).
37. 6y = an — (n — 1), 8, = g[ga,. — (n — 1))
39. a1=2ﬁ‘—a‘ﬂ,d=%_(ni__§.i}_.
i nin— 1)
Moo= g Bd 43. d =T "%,
@1 =+ tn 28, — a1 — tg n—1
Exercises XI. B, page 163 "‘“.\'
1. 972, 1456, 3. —98304, —78642. 6. 150,744, 319, 332,
7. s, 2282, 9. 1.125,508,81, 5.309,135,81. ™\
11. 1458V/3, 2186(1 + V3). 13.-;—25, %‘é LY
15. 5, 1051. 17. 3, 1055; —$ 275
19, 35, 245, +1715. 21. 16, 1081
23.7,1701.  25. 5,0.064.  27. 9, 3066, 28 4.5,
31. 52, 5. 33, 6,252; —7, 343, (\Y 35. +4V/3.
37. 25, —1, o\
1 Ry
38, a1 = Sn, Iy = FEAS
~— 1 A
PR S, Gk VP CNRPY G Sk B
r \ Sy = Gn
Exercises XI. C, pagé\}65
1. O 3% i 5. —3%4,
3(3+‘\/—}\ 32(5 + 4V 3) /5.
7. 22T L g, 2R TV 11,14+ V5.
2'\“ 11 *
18. &, AV 15. 7. 17, 51.
Exe?cbses Xl D, page 767
...\15',3. % 5 #.
N1 284 9 . 11. .
1. . 5. $%3%. 17 1.

Exercises Xl. E, page 168

1. 4. 3. 75 \
7. 12, 15, 20, 30. 9. 3. t1. 5, —4.

5]

Exercises XI. F, page 169 ]
1 8 520, 3, AlZ SA0LT. 5. —230.5, —10675.
7. 192, 129, 9. &
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11, (a) 45 ft., (b) 192 ft., (c) 10 =ec. 13. Gth,
16, {(a) 1133 ft., (b} 135 ft. 17. 3562800 it.-1h,
19, 412 gal. 21. 32.768 in,

23. 226.

26. (2) 727 sq. in., (b) 144 sq. in.
97, {a) 6(3 + V'2) in., (b) 6V3 in., (¢) 6(2 + V'3 in.
29, 1, 5, 9, 13.

Exercises Xil. A, page 176

1, 10 + 9. 3. —3 +3i. 5. =22 (O

7. —8 + 7i. 9. —i. 11. 8 — 5vV2 -4
13. 3 — 2V2. 4, 15. 1 + 47i. 17. 22 + 630
19. 65 + 74i. 2l. §2 + 3. 23. — 1562 1587,
95. 43 — 11V/2 -4, 27. 4 4+ 17V2.4. 28, 1160+
3L & + 3% 33. %5 + #%. 36, S8YGs — et
87, — % - 2—7 s0. 13, 3LV, G- 18V2,

8 123 1 1238 NONT 10 22

43. 3+ % 45. 5t — T O7 a7 434 — HE.

®)
~

Exercises Xil. C, page 180 ~:g'

For abbreviation, cis 4 s Wnbten for cos A + i sin A.

3. 3V'2 cis 45°. 5. 5eis 323.1°. 7. 5 cis 90°.
9. 10 cis 240, 11,. }3 cis 112.6°. 13. 9 eis 270°.
16. 10 cis 143.1°, 1"\? 29 cis 46.4°, 19, 3 ciz 118.8%

21, 3V3 4 3. §3 2V2 +2V2.4 26 —3.

2. =V3—i X 29, —1 44, 31.@-%;.
‘0\.. ) =2

33. —19,318.4 5.176i. - 85. 7.870 + 0.6974.

Exera:g\" D, page 182
14 G0is 70° = 2.052 + 56380, 3. 14 cis 300° = 7 — 7TV3 - .
\g: B0VZ cis 165° = —10(v'3 + 1) + 10(V3 — 1.

. 2 cis 230° = —1.286 — 1,53%.

9. 3V/2 cis 210° = ._%g_ 10’321%::.
1. %cis 270° = — ?i.

Exercises Xil. E, page 185
1. 125 cis 48° = 83.64 + 02.89. 3. 32 cis 300° = 16 — 16V/3 - 4.
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5. 243 cis 140° = —186.1 + 156.2..
T.oeis0® =1, 9. 256 cis 0° = 256.

11, 7 cis 160° = —0.03873 - 0.02138.

13. 5 cis 20° = 4.698 + 1.710¢, 5 cis 200° = —4.608 — 1.710%,
15. 6 cis 170° = —5.909 + 1.0427, 6 cis 350° = 5.900 — 1.042;,
17. B cis 72° = 1.854 + 5,7067, 6 cis 192° = —5.860 — 1.247,

6 cig 312° = 4.015 — 4.4504.
19, V2 ¢is 223° = 1.0987 + 04551,

V'3 cis 2024° = —1.0987 — 0.45514. O
] 7~
21, V2 cis 75° = 0.2005 + 1.0842, O
TN\
V2 cis 195° = ~1.0842 ~ 0.2005i, V2 cis 316° = (1 = 1).
A\ .
23, ¢is0° = 1, eis 120° = —§+ ?1 cis 240° SN\ %‘— ‘%3::.

265. V2 cis 0° = 1.3068 + 02212, V2 cis 1& 0.2212 + 1.39684,
V2 cis 153° = —1.2601 + 0.6420i, WD eis 226° = ~1 =,
V3 cis 207° = 0.6420 — 1.26014. |

27. c¢is 673° = 0.3827 + 0.9320%, cid1673° = —0.9230 + 0.3827,
cis 2474° = —0.3827 — 0.03205% cis 3374° = 0.9239 — 0.38271.

99. V5 cis 15° — 1.6517 + 0:45264, V5 cis 75° = 0.4426 + 1.65171,

V2004 )
V5 cis 135° = %w:{—l + i},
F /5 ois 195° = 16517 — 044267,
T Tl o V200,
5 cie 255572 —0.4426 — 165174, V5 cis 315° = —— (=9,

31, 6, —3.43V3 i ' 33. 2(1 & ), 2(—1 £ 9).

36 3N 1), 3(— V3 &) ‘
37.4 éﬁg — 0.3000 -+ 0.9511, cis 144° = —0.8090 + 058783,
s 216° = —0.8000 — 05878, cis 288° = 0.3000 — 0.95113.

NUExercises Xl A, page 191 . ' ]
Tn exercises 1-21 the first expression given Is the quotient, the secon
15 the remainder. '

t 10, 15, 8. 2+ 4z, 7.
jﬁ: iafgih,’a ' 7. 347 4+ 12+ 16,4,
9. 2% + 327 + 4, —1. 11, 448 + 2 +4x+2,o£w
13, 32% — O? + 62 — 3, 0. 16. 377 + 0.7z + 0.5, 0.1 -
17. 2* + daz — 2d% @% 19, 35— 3V2.20 + 20 — 2V2,0.

91, 248 — diz? — 5u + 10, 0. 28 13, —62. 25. 0, —60.
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Exercises Xlll. B, page 195

1.2 4 —1.

3. 3, 5, (—1,0), (i.e., between —1 and 0).

5. 31 F]'i (*‘4;'—'3)' 7. (0:1)7 (213)! (_37_2)

9. _"2’ (1)2)) (4)5}' 11, ("4:_3)'

13. —1, (1,2). 15. No resl zeros.

17, 2, —5. 19, 3 —2. 21, 4, —4. 23. 6, —2.
Exercises Xl C, page 200

3. —2 + iV, 11-%-\—/-‘5- 5. i, =i, 2+ V10, )
Exercises XlI. E, page 204 RO

Nore. (1,0,2), for example, means 1 positive, ( ncsgat.lw 2 imagi-
nary.

1. (1,02). 3. (1,2, ).%,n;z).
b. (2:1)0)) (0,1,2}. 7 (2:1:Q‘( 3172)'
9. (1,2,0), (1,0,2). 1. 3.8,0), (1,0,2).
13. (2,1,0), (0,1,2). 15., (%,2,0), (1,0,2).
17. (0,3,0), (0,1,2). 190,2,2), 0,0,4).

21. (2,2,0), (2,0,2), {0,2,2), (0,0,4%%
23. (2,2,0), (2,0,2), (0,2,2), (004)

26. (3,1,0), (1,1,2). 27— (2,2,0}, (2,0,2), (0,2,2), (0,0,4).
29. (0,0,4). 31\\(0 33. (2,0,4), (0,0,6).
Exercises XIIi. F, pagk~\208

L 3. PR 2N 5. 1. 7. 4 % —%
9. 2. \11. None. 13. 0, & 15, % -3
17. 2. ,\ 19. 4 —5, —2 —%. : 21, 41 in.
ExerquXfff. @G, page 211

1. 1379, 3. 1.879, —0.347, —1.532.
5\*2 428, 7. 1.761.

% 0.340, 2.262, —2.602. 11. 2.213.

13. 2.729, —2.587. 15. 1.710.

17. 2414, —0.414,

Exercises Xill. H, page 213
1. 2 ~24+4=0 3. 22— 8+4+7=0 6 42—7=0
%. 2z% — 3.8z — 7.76z — 8.384 = O, or
x? — 1.92% — 3.88z — 4,192 = 0,
— 100z — 4252z — 150 = 0.



ANSWERS TO ODD-NUMBERED EXERCIéES

401
Exercises Xiil. |, page 216
1. 1.328, 3. —3.379.
5. 2491, —0.657, —1.834. 7. —1.466.
9. 4,2.180. iL 5,4 3 —&
13. 20.866, 0.530, —0.419.
15. 1207, —0.707, ~1.586, —4.414,
17, —1. 19, 3.684. 21. 1.516.
23. (3,2), (3.584,—1.848), (—2.805,3.131), (~—3.779,—3.283). .
25. 0.72 in. 27. 5.434 in., 9.434 in. K\
29, Diameter 7.710 in., height 10.710 in. >

31.

0420, 33, 0.472. 35 0.805. 37, 0544 39, 0.4d4:

Exercises Xill. J, page 225 R (4,

1,

\z/g—i- % w‘\zy_-i- w2\3/§ mhy_-f- m\’/“

3. 4c0240°+ 2 = 5064, —4ec0520° 4 2 = —1\759

B.

4 cos B0° 4 2 = 2,695,

14+ V5 4+ Vs 1+wf+w2\/_ 1\«.,2\/‘4.“,\/35

1

7. 52+ V3 9—"2.—.&‘\/?-—25:1,\/_

11, 2 £ V3, 490 18-85 4 Ve, —2 = V7.

15, 21 + 5VE £ Va7 — 10vVE
Exercises XIll. K, page 2260 ’

1. —6, —5. 3492, 5. —4, ~9.
7.4 1. \‘9\ 7 :!:\/— —§:46 1. -1, ~4,2;
13 %,%}h— _E,C_ _T!d__lo

15, %!’J\é! '%’d 15&: e“_%i: 'Ihfsiiﬂ' -Iﬁfp% d=
e < 126

ﬁxe?ti'ses XiV. A, page 232

1. 2. 3. 4. 5 —1. T 4 9, —4. 111,
13, —3. 16. 0. 17. 0. 19. —4. 2L 1. 23. —1.
25. 728.. 27. 0.0728, 29, 72800, 31, 0.000728.
33. 4.23. 35, 0.0423.  37. 0.000,042,3. 39. 4.23.
Exer.c;'ses XIV. B, page 235

3. 04771, b 2.6021. 7. 9.8007 — 10,

9. 0.2867. 11, 1.5780. 13. 4.9024.

15. 8.8688 — 10.
21

,d =10

—1 —._l:z\/3a9\ —1 & V359 .= 181
12 0 12 AT

17. 9.9999 — 10. 19. 6.0484,
8.0004 — 10.

— 4,
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Exercises XIV. C, page 236

- 1. 3.a20. 3. 0.2060. 6. 6.000,
9. fi415. 11, 31.62. 13, 10.47.
17. 0.03442, 19. 3428. 21. 1.08a.

Exercises XIV. D, page 244

T. 167.3.
15. 1.024,
23. 0.005495,

Answers were computed with four-place logarithms.  Where correct

result (to proper number of significant digits) differs, it is given in { )

1. 680.3 (680.4). 3. 12.86 (12.87). 5. 0.02930. .
7. 0.2229. 9. 5.490 (5.500). 1% 8.024 (8.026).0 Q)
13. 343.8 (343.9).  16. 0.9135 (09136). 17. 0.5776 (0.577B).
18. 17.04 (17.03). 21. 0.000,223,5 (0.000,223,4).
23. 0.2249, 25. 10.69. 27. 079725

29. 6.480 (6.482). 31, 2.819. 33. 1.218.°

35. 0.2198 (0.2197).  37. 0.1902 (1.003).  39.~BBO1430.

41, —0.1004 (—0.1005%). 43. 0.9500 (0.9802).

45. 0.9986 (0.9987). £7. 0.7632% "¢

49. 0.2531, B1. 0.5645 (0.5646)4 ’.53 —0.2295.

55. 6.920 (6.919).  57. 1.016. ) . 193.8 sq. in.

61. 1611 {1612) eu. in. 630 7700 cu. in.

65. 2.048 sec. 67. (a) 858"7 (838.6), (b) 98.28 (98.33).
Exercises XIV. E, page 246

1. 4.322. 3;\3.737. 5. 2.666.

7. —1.431, .§.00.7823. 11, 0.3396.

13. 1.517. 5. 15. 17. 41.

19. —b+iozc >N 21, 3.134, —0.880.  23. 3.650, —1.778.

~ .
26. 1664, 166 log - log ¢

log e

" log a (log a + log b) log -+ log & ’

Exerc;ses XV, F, page 247

LK% 3. . 5. —2. 7. V3. 9. 8V/2.
\13..%. 13. 3. 15. 4. 17. & 19, 1.
2L '\/E i 23. A 0 !

-z . Any no. #£ 0. 25.63-
27. b, 2. =.
a

Exercises XIV. G, page 250

3. 2.322, B. 1.609. 7. 0.6931.

9. 3.096. 11, 1.074. 13. 4.565.

.’\
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15. 2.851. i7. ;1.1754, or().8246 — 2.

19. &

Exercises XIV. H, page 252

1. 1.5723, 6.5072. - 3. 2.5060, 5. 1, 0,8259,
7. 0.4263. 9. 2 4, —0.7667. 11 0.0210.

Exercises XV. A, page 256
Answers given first are from tables in book. Thosein { ) are correct\
to nearest cent; they are omitted when book tables are adequate. {

1, {8} $121.67, (b) 3121 50, (¢) $122.02.
3. $112.68. 5. $1160.32 ($1160.33). "\

7. 11. 9. 5%. 11, 2.5%. 1354%

15. (a) 11.9 yz' (b} 11.7 yr., {c} 11.6 yr,, (d) 11.4 yiuA4-place logs),

11.8 yr. (7-place logs}. A,
17. 83 yr.
19, () $102.00 ($101.98), (b) $101.00 (§100; 9\9),
(¢) $100.30 ($100.33). 21, 256000

Exercises XV. B, page 262 .jf,' :

1. $5416.30 ($5416.32). 8, $2292.78.

5. $6356.10 ($6356.12). "n 7. $906.54 ($906.53).

9. $07122 (897122.49). 11, $7358.95 ($7358.94).

13. $452.98 ($452.29) ¢\ 15. $6243.20 ($6243.18).

17. $8390.75 ($8390. 7‘0; 19. $5438.70 (85438.67).

21, 4.17%.

Q. R

Exercises X,W(A, page 268

1, 7205, ()" 3. 72. 5. 12,

7. Eséry 2 mi. 9. 999999. 11. (a) 180, (b} 648.
13.. 1840, 15. (a} 241920, (b) 987680.

LAT)210. 19. (a) 443520, (b) 169344, () 112896
\Exercises XVI. B, page 272
1. 35. 3. 28. 5. 190. 7. 120.
9. 16002. 11. 20,358,520, 13. 127. 15. 945.

17. 302400, " 19. 106302,

Exercises XVI. C, page 274
1. 12 3. 720. B. 40320, 7. 15, 9. 56.

11, 10080.  13. 220. 15. 3360. 17, 144 19. 11880. -
21, 325, 23. 42, 2. 55986. 27, 232, 20. 10240.

81. (a) 53, (b} 758.
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Exercises XVI. A, page 279

(&) 5 b) 2. 3. %
5. 1214 7. $0.62%.
9. (a) 0.0078 (b) 0.9922. 13. (a) 08297 (b) 0170%
15. 0.0261. 17. (a) i1, (b) ar. (o) &
19. &5 21, £ 23. ¥
Exercises XVIl. B, page 285
1 4 3. L B. 0.2634. R
7. (a) %, (&) W (&) =15 9. (a) 0.000,153,8, (b) 0.01035.)
1L () P ) 1o, () The. 18 & O
Exercises XVil. C, page 288 7.\ 3
L. (a) 15 () 4 3. (a) THT, ) ae.

b. (a) 0.107, (b} 0.376.
7 (a) 0.00208, (b) (.00069, (¢} 0.99998, N
9. (a) 0.531441, (b} 0098415 ] 011425%

Exercises XVIl. D, page 289 O

1. (2) § () 35 3. ¥ N 5. 7.

7 4 9. (a) zm, {b) Tore, (0) ew
1L A, 8245 B,$2h. 13, A, 38, 3 15.

17. 4. 19.. 3.84¢,

21 (a) 75, (M) 0,(c) 3, @]\0 (e) %, () 0. 28. (a} 5%, () (

25, (”" = 2)”"_ I\
n—1 a

%

Exercises X V’Q'.::B,":pa ge 299

1. —11. .7 3. 180. 5. —23343.
‘. h—61>}Q S 11 —4, 2.
13. ?, ~s. 15. —3, 9, 4. 17. 2,2, 2.

19 »q]fg, 741_5', ‘7‘1‘% 21 12 4, 10-

\Exerases XVill, €, page 307
1. 36960, 3 0 6. —17. T. (.
9, —27. 11. 2886. 13. 1872, 16. 902,

Exercises XVill. D, page 316
lLLe=—l,y=2,g=—3,t=4.
3J.e=56y=—"Tz=—-2,t=3.

5. 4A=3B=1,0=2 D=1,
Toe=7y=4z=—3t=5w=—1

¥
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— 28 -
:363 :y=M;z=c,cmbitmry.

1. 2 =26+ 1, y = —e 4 3, 2 = ¢, ¢ arbitrary.
13, Inconsistent.

9

—3 2 —_
16. =z = 05.+ 1y = 2C5+3: 2 = ¢, ¢ arbitrary.
17. =5,y = & 19. Inconsistent.
2, x =2,y = —T. 23, 2= —1,y=2.
25,z =2,y =3,2=—1, '27. No nontrivial solutien. (%)
29. x:y:e=—9:4:6  BLa:y:z=1:—3:8 O
Exercises XIX. A, page 326 K "}g
L3 2 o1 14D
r—1  x=—2 ‘z—6 a3
5 3 1 PRI\
"2z —2) 2+ 2) 'w—4*f\\22—3
6 7 N 5
! — . il S + —
2 +3 br— 1 "E>4  z—2
18 7 gy 1 6
13‘2:—6_3‘,—3' :%im—ﬁ 12z + 1
. 3 2 5 "."" P g 3 2
— w19 —— + - =
17'x+'1 ;r.--2+$—.:"4 ' z+1 2—6 = ]
.3 2 AN 2 2 >
_ ) 23, ——+ —=—
ey P A orite T e
o 2 A S .
“r—2 w4l @+l
12—
Sl Ko
N0 0.
NI — 8+ 5) 1122 —3)
7’\"
R i 1 2r .
\’31.x+2+x—-2+9:2+4
$+1 — 1 . 35. & ____,.i-x—io
B@-z+D 3@+ 243 (F+3)
1 _z+2  Gt12
.5 Fr2 @+
4 3 sz—5 1286
39. ;—4_—24‘_(3:_}_2)2 242 (@ _;;2)2 ,
2 1 - .
. SN DR, et
41.3:__1 (x_1)2+(x+1]2 2+1 @+
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1 3 4
43, —-——.  4b 2 - .
—2 z+5 %+ +2£+1 r—4
a7 9 — 7 47 47
’ 163z +2) 16(z +2) 4l +2)*
49, 5 1+ 2 +x-—3

S5+ 3 2Et 8

51. x2+2z+1—i—35—— 17z — 1
WA

3(2% — 2z + 8)

AN
Exercises XX. A, page 329 ~ N
) n—1 & W
1 L. Y 2 YRS T 7. £
an 8\3 n? (:n 4132
Va A\
9. ——1— . 11, yn, \J
(411, — Ndn — 1) n O
on N
18, = 16. =« .7
n' nl NN
1 AY
y S S 19, 7 .
n+ 12 —n 2= 001n
1. 1, 23. —1-';"— . 25. logws - - -
(1 + 0.1n)? logmr(:n + 1 D

Exercises XX, B, page 339\

C means convergcnt\{)‘ mheans divergent.

1. D. 3. C. ¢4 C. 7. D. 9. C. i1.D 13 C
16. C.  17. C xI’Q D, 21.¢. 23D 25 D

Exercises X:{(;.\C, page 346
1. C. 9D &C 7D 9D 11C 13D
16 C». 17. D,

\'Bz;erc;ses XX. D, page 348

1. =1 £z <. 3. —m <5 < W, 5 —1 <z <1
7. —-1=2zx=1 9 —1=z£1. 11, -1 <z <1
13. —1 <z < 3. 6. —1=2zxz=1. 17. =« = 0.

1%.a—b <z <at+b 21, —1 <z« L

Exercises XXI. A, page 358

1. 1st differences: 3, 5, 7, 9; 2nd differences const, = 2.

3. 1st differences: 3, 11, 25 45, 71; 2nd differences: 8, 14, 20, 26.
3rd differences const. = 6.
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5. 1st differences: —2, 6, 44, 136, 308, 578, - -; 2nd differences:
8, 38, 92,170, 272; 3rd differences: 30, 54, 78, 102; 4th differences
eonsf., = 24. -

7. —41, —m? -+ O9m — B.

9. 168, —2(3m* — 14m? ~ 231m® + 458m +- 1080).

11. 0.1864, 13. 2.9300.
15(1). 395, dem(@m? 4 3m -+ 7). XA
15(3). 2365, Y5m(3m® — 2m? + 3m + 8). oS
15(5). 13118, gom(12m? — 45m* + 50m* — 75m — 542). ~f\(\“~
17 Im¥m 4 DL 19. jm(dm® — 1), O
21. vemim + 1)(Bm® — 5m + 14} ¢\\§
23. im(m® + 2m — 7)., D
A
»
t“\,\'
(O
\“‘}.\
O
N
‘a‘;“
O
Fa “)*
g\<\.}
N
A\
A\
o0
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